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Abstract

The robustness of moving-hank multiple model adaptive estinadion (MMAE) and ool
PMAMAC) algorithins is analyzed in this thesis. The nusmatel of a0 24-<tate trnrh ol saed o

G-state filter model are evaluated on the basis of MMAL/MMAC perforiiaue:

A model developed usiug finite element analysis is used to approximate i larae space strnetire

which has a large central hub with appendages radiating out from it Vo niass of 1l hub s

considered to be much larger 1han the mass of the flexible structire. The eded i v bope
e physical coordinates and then transforned into meadal coordinat . oo hinnn oo redaecd cnbor
filtor madell the nethod of stngular perturbations is used. The aerual pesitions aned se b < ol

varions physical pomrs on the straeture are used i the evalation of e MNAENINAC ade

performance.

The results of this study of model mismatching indicates that the MMALR provides securate
position and velocity esiimates even in the face of a G-state to 2é-siate ode D misnatch, When o
pon-adeptive filter is used with o uismatched parameter location, the performanee suffers shightly.
The use of an adaptive estimator does provide improved performanee i the face of uneertain
pariineter [oeation. Stable control was obtained with the use of MMAC, For (he case of non-
adaptive filter and mismatched parameter location, the control algorithm behaved i a possibly
destructive manner. By allowing the filter to adapt to the initial paramicter location, the MM AC

alcorithm provided stable control of the structure, even in the face of large disturbances.
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ROBUSTNESS OF A MOVING-BANK
MULTIPLE MODEL ADAPTIVE CONTROLLER

FOR A LARGE SPACE STRUCTURE

[. Introduction

A situation exists in estimation and control design problems where the parameters deserilnng
the system are not known with certainty. Additionally, the parameters may be varying as a function
of time, such as due to the depletion of a fuel eell or the jettisoning of external stores on an aireralt,
Another possibility is that the system parameters may undergo a jump change (a4 radical chiange
from one value to another) due to a hostile environment affecting the physical structure or struetural
failure due to an imperfection or structural fatigue. Due to these possible parameter value changes,
adaptive estimation of the system states and adaptive control might be used in controlhing the
svstem’s performance. Another problem is that using a complete mathematical (or “truth™) model
wanld ereate an unbearable computational load due to the lngh order of the model. Therefore. one
nsnally chooses to use a reduced-order model for the basis of synthesizing a filter and/or controller,

and so robustness of the adaptation process to unmodelled effects bhecomes an important issue.

This thesis uses Kalman filters for the estimation of the system states of a large flexible space
structure. The techuique of estimating the system states is referred to as Multiple Model Adaptive
Istimation (MMAE), having the structure of a bank of Kalman filters (each based upon a single
diserete value of the parameters) and then forming the final state estimate as a probabilistically
weighted sum of the individual filter state estimates. The concept of a “moving-bank™ MMAL
algorithm is that not all possible elemental Kalinan filters are maintained in the bank at all 1imes,
but only a dynamically redeclared subset, such as those corresponding to discrete parameter values

closest to the current parameter estimate. The estimated states are, in tura, used as inputs to

1-1




a controtler. This control process is referred to as Multiple Model Adaptive Coutrol (MMAC).
The MMAE/MMAC algorithms developed in this research are used to control a large flexible space
structure. ‘The algorithims have evolved over a five year period with rescarch perforined by Heng [3].
Filios [6]. Karnick [11]. Lashlee [15], and Van Der Werken [24]. In particular. the work perfornnd
i the last thesis (24 will be continued, concentrating on the effects of nninodelled states on e
overall performanee and robustness of the estimation and control system. This thesis uses the
Kalman filters in abank configuration where each filter hax been optimized for a4 given combination
of the parameters of interest. Due to computational loading coneerns, the parmmeters have Loen
liited to two. The reasoning behind this will be developed in Cliapter 20 The robustness analysis

of the controller provides insight into the effects of using a reduced-order state filter model
1L Background

The original feasibility study using a moving-bank multiple-model estimator/controfier was
perlormed by etz [8] and subsequently presented by Maybeck and Hentz [22]. The Kalman filter,
a recursive optimal flter, is the primary building block of the MMAE technique, and so 1t is now
described. The development of the Kalman filter in this section is not intended to be complete,
For detailed discussions of the Kalman filter and related topics see [18]-[20]. The notation used in
this “hesis follows [18] such that a stochastic process is denoted by x while o deterministic process

s denoted f)_\' X.

(1.1 Kalman Fdte. The Kalman filter is the foundation of the MMALE/MMAC control
Jdesign To use the Kalman filter approach to state estimation, viewed here as a specific form of
Bayesian estimation [19:129-136], the system of interest is assumed to be adegnately defined by a

linear stochastic state model {18:163-170]. The equation representing this system is given by:

(1) = F()x(t) + B(t)u(t) + G(1)w(t) (1.1)

1.2




where x(4) ropresents an n-vector state process, u(-) is an r-vector deterministie control input, F(-j s
an n-by-n system dynamies matrix (which contains the parateters of interest i this effort). Beo) s
an n-by-rdeterministic input matrix, and G(-) is an n-by-s nois» input matrix. The characteristics

of the white Gaussian noise w is of particular unportance.

The statistics of w(.) are given by:

E{w(l)} =0 (1.2)

E{w(t)w()} = Qa(t = 1) (1)

where Q) 1s an s-by-s matrix that is s mmetric and positive seimdefinite. 8(1) is the Divae debta
function. Q represents the dynamics noise strength being put into the syvstem. The selection of Q
1 often left to the engineering intuition of the designer ['l:lt)()] and therefore will be a challenge 1n

the estimator/controller design.

Another important statistical property is related to the state process vector x. The inital
cotdition of x and the certainty with which this value is known is required. The initial condition
mean value of the state is given by:

E{x(t0)} = xq (1.1)

The right hand side of Equation (1.4) is the mean of x at the initial time ty. The degree to which the

initiz ition is k tis given Ly the covartance which is denoted b and given in Equation
initial condition is knowu is given Ly the covariance which is denoted by Py and g Equat

(1.5).

E{[x(to) ~ %o][x(to) — %0]T} = Py

—
—_—
o

—

To implement the Kalman filters, the discrete forins of the above equations are used. Equation
(1.1) contains the matrices F, B, and G. This same system representation may be expressed in a

discrete time formulation [18:170-172]). The state transition matrix, @, is derived using the system

1-3




dyvoamies matrix Fo

Bt ty) = Bt —1g) = L7 {[sI - F]7'} (1)

i F ix o constant matrix. @ defines how he state vector changes over the specified time period.

Additionally, the deterministic input matrix B may be expressed ina diserete-time form using &,

tigt
B(i(fl): / @(f,‘.H.T)B(T)f[T (1,7)
Jt,

The discrete-time white Gaussian system dynamics noise vector w, has a covariance Qy that is a
function of the state transition matrix. the noise input matreix, and the strength of the continuous-
tune w:

rlogl

Qult;) = B(tig1. 7)G(NQT)G ()BT (1141 T)dT (1.8

t

Iu terms of these discrete-time matrices, equation (1.1) is rewritten as:

x(fi) = @, Lo )x(Eog )+ Bultimpulli— ) + wylliog) (1.9)

and the time propagation equatious for the conditional mean state estimate of x and the covariance

arc given by [18:174-175]:
x(t7) = @, i )X(t ) + Baltioy)u(tioy) (1.10)

P(t7) = ®(t;, Lio)P () @7 (i, tim1) + Qaltizy) (1.11)

These equations give the relationship between two consecutive state estimates and covariances at the

tirnes ¢ and lf_l. Note that, in order to carry out the above calculations, the estimate x(t1 ) and
the covariance P(4f ) inust be known. For these to be determined, a measurement from the system

must be taken and the entire system of equations updated. The “4” and =" superscripts indicate




that the variable of nterest is evaluated just after or just before a tieasurcient is incorporated,

respectively.

The discrete-time (or sample-data) measurement z is determined by a measurement njodel:

2(1:) = H(t)x(L) + (1)) (1.12)

The variable v is the measurement noise accounting for the uncertaimty with which the wwensove-
ments are obtae I The mieasurement noise 1s generally considered to be a Gaussian diseretetinme
process with zeio mean and a covariance of R. The system model develaped assuwmes that the
system dynamics noise w and the measurement noise v are independent. In addition. the noises
are dependent of the initial condition x(fg). Once z has been measured, the entire system of
equations aic updated using the follewing three equations (in addition to the equations already

given in (1.10) and (1.11) for the filter’s propagation cycle):

1

K(t) = P(t7)HT (1) [H(G)P T )HT (6) + R(4)] ™ (1.13)
x(t) = x(17) + K(t:) [2(t:) — H(t)x(]7)] (1.14)
P(t}) = P(t]7) — K(L:)H(1)P(t]) (1.15)

The bracketed term in Equation (1.14) is called the residual (or in some literature. innovations
[4, 14]) and denoted by v(t;). The residual of the Kalman filter indicates how much error correction
is required in the filter, since it is the difference between the most recent measurement and the
best prediction of that measurement based on estimates prior to that sample time. The residual is
weighted by K and added to the previous estimate of the state to arrive at the new estimate of the

stafe.

The discrete-time Kalman filter stochastic difference equation and propagation equations have




been presented as areview. Several important numbers in the scalar case. or miatrices in the veetor
case, are involved 1 these equations. They are derived from the model of the system developed by

the designer.

1.1.2 Systcn Model The integration of control system design and structural considerations
during the design phase of a system is becoming both commonplace and necessary [25:1768]. While
this research effort does not develop the actual system model, it is important to understand some
basic concepts that underlie the models. The large space structure considered s maodelled by finear

COUATIONS,

The thesis rescarch performed over the last five years has involved different types of investi-
gations. Hentz performed a feasibility study on using a moving-bank MMALE/MMAC approach to
solve the control problen. Filios continued to look at the problem of applying thix same technigue
to & more realistic spacecraft model: however, online adaptation was not really required for tha
particular spacecraft. Karnick was given the basic two-bay truss model. added modifications, and
used the new model to perform his research. Lashlee used the same model to perform s rescarch.
Van Der Werken used the same filter model but included higher order modes in the truth odel,

24 states versus 6 states.

One of the primary concerns in control design is disturbance rejection. The ability to with-
stand owvtside interference from natural and man-made phenomena as well as disturbanees from thie

svstem itself is essential.

In large space structures the disturbances are the result of slewing/pointing mancuvers,
thermal transients, and mechanical machinery such as coolers, generators, ete. Control
of the dynamie response is essential for maintaining the ride guality and performance
requirements, as well as for the safety of the structure [25:1768].

The parameters that affect the performance of the system may be categorized as (1) the physieal

composition of the structure, (2) the sources of disturbances, and (3) the contral system itself.
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Figure 1.1. Rotating Two-Bay Truss Model

The physical composition of the structure is shown in Figure 1.1. The structure has co-located
accelerometers and thrusters, which simplifies some of the calculations. The hub has gyvroscopes to
determine angular displacement and velocity and a co-located inertia wheel as an actuater. The

sensor and actuator locations and functions will be explained in detail in Chapter 3.

Karnick presents a very thorough description of the components of the two-bay truss model
that represents an appendage of a larger space structure (such as a manned space station) [11:39-58].
The aluminum rods that make up the two-bay truss are assumed to be of a certain cross-sectional
area and elasticity. The mass and stiffness matrices that describe the model were calculated using
finite element analysis (11, 26]. Chapter 3 presents the results of the finite element analysis and
the development of the matrices that describe the system. The matrices are considered to be the
nominal values for design purposes. During this research the parameters that are considered to
vary, namely the damping factor and natural frequency of the structure, are the result of changes

in the mass and stiffness matrices. The truth model is developed by using twelve modes, the rigid




body and eleven bending modes, which are represented by twenty-four states.

[n efforts prior to those that addressed the rotating two-bay truss, the MMAL and MMAC
algorithms were used to control models of various complexities. Hentz used o simple two-state

medel of the steneture [8:16]. The control ratio of the structure dynamics is

C'(s) w';“:

= — - > (1.1
R(s)y s+ 2(w,s + w2

or in state variable form (standard controllable form) the structure dynamics are deseribed by

0 1 0
x{t) = x() + u(l) (i.17)
—w‘;'; ‘2(?\.&4“ ..d;”:
<'(/)=[1 ()]X(’) {(1is)

The state vector x 1s composed of two components: x; (), which represents a position variahle, and

X2 (£). which represents a velocity variable.

The work performed by Filios [6:38-41] used a more complex model. Filios evaluated the
MMAE and MMAC algorithims against the Draper Lahoratory/Rocket Propulsion Laboratary Con-
fignration model. which consists of four cantilevered appendages attached to a central hub. This
model more closely represents a satellite with four “whip™ antennas than the structure developed

by Karnick. A six state model was used by Filios.

The work performed by Karnick [11] used a two-bay truss model attached to a hub. Karnick
nsed a six-state model accounting for the rigid body mode and two bending modes of the structire:
a reduced order model derived from an analysis using the method of singular perturbations [13].
Lashlee's research [15] nsed the same model. Both the truth and filier models used six states for
Karnick’s and Lashlee’s research, and thus there were no unmodelled state effects. Being concerned

about the effect of inmodelled states (a robustness concern), Van Der Werken used a 24-state truth
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model and a G-state filter wodel [24]. The full development of the truth model is presented n

Chapter 3.

The number of states describing a model used in control analysis cannot be predeterinined
solely on the basts of mathematical insight or engineering intuition. The computational foading
requirements of a4 specific implementation may preclude the use of more than o few states. I his
[ration may have nuplications ou the robustness of the contral system and 1= the concern of this
thests effort. By mereasing the number of states used in the troth model, Van Der Werken observed
changes in the systenn performance as compared to that portrayed by Laslilec These ahservations
indicate that the filter model state size may require modifications for proper performance fron the

MMAE/MMAC algoriths,

113 Multiple Modcd Adaptive Fstimation - MMAE The use of full state feedback s the
normal imtial approach for optimal control. Full state feedback provides the control system stability
atd robustness to external and internal disturbances. However, perfect access to all states is seldom
attmnable and so a state estumator is used to provide best estimates of plant states to the controller
that was designed as though full state access were actually available. The controller for this research

is an LQC controller.

Using LQG conteol assumes that the systemn model is Linear. there s a Quadratic cost
criterion associated with the control problem, and the noises used in the dynamies and measurenient
eqnations are taken to be Gaussian. “'The LQG optimal controller has the ccrlainty cquivalence
property”[20:17]. The certainty equivalence property is a special case of the separation property.
The LQG controller is equivalent to the optimal deterministic controller “but with the state replaced
with the conditional mean of the state given the ohserved measurements...” [20:17]. Figure [.2shows
the flow of the signals from the systemn to the estimator. The estimator provides the current state

estimation to the controller, which in turn provides a control signal to the systein.

The usual problems encountered in a real world system, as is the case with the flexible space




Externgl
Disturbences

Control Input Y Scrpled Messurement
- 1 Dynamis T
‘ System
|

Controller [™ T Estimator

— A
| Memory |

—

Figure 1.2. Diagram of Feedback Control System {20]

structure, are that the states themselves may not be directly measurable or the system paraimeters
may vary from the original design as discussed earlier. The approach that MMAE uses s 1o desion
each Kalman filter for a dixerete point of interest in the parameter space. The real paramerer-
may actually be continuous in the region of interest. The number of values that a parametor
could attain would therefore be infinite and the resulting combinatious of parameters waonld als
be infinite. Since the use of mfinite (or even very large) computers is not realistic or practicad
for this research, the parameter space is viewed as a discretized version of this continuum. For
example, if the system had two parameters of interest that could take on two discrete values each.
then the parameter space would be comprised of four discrete points. [f, however, the parameters
could take on 100 values each, the parameter space would be composed of 10,000 discrete points.
each requiring a Kalman filter and eventually an LQG controller, which would be an unbearable
computational load for any real-time control system. The work performed in previous research
(11, 15, 24] uses a two-parameter, 10-value-per-parameter approximation of the actual continuons
parameter space. The parameter space employs 100 points. Figure 1.3 shows the block diagram of
the MMAE algorithm. A full-scale MMAE algorithm would require a bank of 100 Kalman filters

for this application.
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Figure 1.3. Diagram of Multiple Model Adaptive Estimator [21]




Fhe adaptive estimation oceurs due to the mudtiplication of the probabilities generated Lased
onthe restduals fom each Kalinan ilter. The state estimate of cact filier is mnfeiplicd by the
probability that the assumed value of parameter for that particnlar filter s the best parancter
vidite to use. The probability from each Kalman filter ix a function of the conditional probubiliny
deonsities related |~\

fl(l,"li_\AZlhgl ;(7'! HELYS Z, Wkt -1 )

it ) = N by
ijl f’l_,(t.uli_iZH._m(z' "]-Z:—l )]’](’1~])

whor Koas the nomber of filterss The first mimerator term represent= the probabiling densio o
the carrnt measupeent Lased o the assemed age paramerer and given the provions iaensur e o

Bsrors throneh tie 1,00 Z0 0 The =econd nammerator teend is the previens g vabue, and this

chivg s st rateee el on, The probability denstoy Dogerion s formed b

|
e L )(-Zl I]"‘l' Zr—[) = —_‘T—_“—‘"'\'I’{‘}
i, (27)% | Ax(t) |

1

(= =<l unA ow(n ) (1 20)
2 k

Ty

where A0 ) s o finetion of the measurement matrix He(¢,), the covarizce soatrix Pr(07). and
e s covaraner matrix Ry (). namely Aty = [Hk(l,)P&.(I,’)H[_'(I,)+ lh,(l,)]. The de-
vormimator s the s of all numerator terns for j = 1oo0 0 N so that the sum o all pris unity,
Avther way ol stating this is that the conditional probability pe(f,) 15 the probability that the
discrete random processa, equals some specific value, ag, given that the measurement 2, ) has
taker aspecthie realization Z; [19:130-131]. The weighted estimates are then sunnned 160 provide
the best probatalicieadly weighted estinate of the current state. The computed probabilities have

the eharncterstie th
N

Zmzl (1.21)

k=1

This projerty does not let any one filter contral the estimation pracess unless one of the estimator's




prcbahidiy st e aned adl the others go to zero. The possibiliny that tlos cise conbd e
Bos Bovns comsidiored Ty severad resen, oh efforts 8022060 1115, 200 T Steps st Lot
provent any probadalites from soing to zevro, sinee any such probability would becone permanent iy
forked anto zero by the 1teration performed by (1.19) even if changing conditions were to eonnse
it prrtealar paciaaeter vidue to beeome the best value, One way to prevent the probanaahines
froon gotng to zero 15 1o set some lower and upper limits that the pe may tike one Onee this s
aceomyphshed s aoviabhe adaptive state estitnate is available for use by a control syatenn as shown i

Fricire 12 o0 1o

porg Multiple Moded Sdaptive Control - MMAC Karnick developed the LQG comtroller £

o The MINEAC

|
J

the two-bay truss model [HEST-08] that has been used by other researeh efforts [15.2
alecrithin uses the MMAE algorithin to develop estitnates of the states. Each of the state s stinntes
=~ then S mto o vontroller optinuzed for the parameter value corresponding toits estimate inpn
Pioaee 104 shioses the sigoal flow. The blocks denoted by —GX{ag) are optimal controller gains
~pectheally established for each diserete parameter value ag. Slight mistuning of the filter and/or
contealler parameters can cause poor performance of an individoal LQG controller. The MMAC
controller provides some relief from this parameter mismatch problem since it uses a weighted sum
of vomtrol inputs based on the hypothesis conditional probabilities computed n the basis of the
rexiduals generated by the Kalan filters. The MMAC approach to a control solution suffers from
the same computational loading problem as MMAE. An alternative to full-scale MMAE/MMAC
s the use of moving-bank MMaAK/MMAC to provide a very close approximation to fullseale

MMAE/MMAC optimal control with reduced computational leading.

1050 Movong-Bank MMAE/MMAC The theory behind the moving-Lank MAAE/MMAC
i~ that the estimate, aud o tuen the proper coutrol input to the systenn may be approxinated
by redaced number of diseretized parameter values that take on the values of appropriate (dy-

namically redeclared) [ocations used for the hasis of the full bank. Figure 1.5 shows how the full
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Figure 1.5. Diagram of MJMAE/MMAC

MMAE/MMAC system would look if all the filters were used. Each of the blocks represent a dis-
crete parameter point used as the basis for a Kalman filter and/or a control gain. Figure 1.6 shows
how a moving 3-by-3 bank might appear surrounding the current (estimated) parameter value. The
moving bank is composed of nine solid blocks. The “discarded filter” points correspond to a 3-by-3

bank at an earlier time instant when that set of nine points most closely surrounded the estimated

parameter location at that time.

The problem of how to move the bank has been discussed and evaluated [8, 22,6, 11, 15, 21].
There are five basic techniques for deciding to move the bank or perform a coarser rediscretization

of the active bauk of filters as shown in Figure 1.7. The techniques are:

Residual monitoring

L]

Parameter position estimate monitoring

Parameter position and “velocity” estimate monitoring

Probability monitoring
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e Parameter estimation error covariance monitoring

Residual monitoring uses a likelihood quotient defined as:

Li(ts) = vF ()AL vit) (1.2

1o
(R

1 deweimitne wnether a move of the vank is requived, wiere A,:’ 5 GHU IRVGST THALTIX ahnenring
in Equation (1.13) (the bracketed inverse). If all the L are above a preset hound. the hank is
moved. Further, the filter with the smallest likelihood quotient should be the filter neavest the
true parameter value. Residual monitoring is susceptible to single large smanples of measurement

noise and may give false alarms [22:92], i.e., the bank may be moved even though the move is

uineccessary.

Parameter Position Estiimate Monitoring attempts to keep the bank centered on the

current estimate of the true parameter. The estimmated true parameter is given by

K
a(ty) = E{a | Z2(t)} = Y ae - pult) (1.23)

k=1

When the “distance” between the center of the bank and the estimated parameter location becomes
larger than a preset value, the filter bank 1s moved. Since the calculation depends on the time history
of measurements, this technique is less susceptible to false alarms than the residual monitoriug

method {22:29].

Parameter Position and “Velocity” Estimate Monitoring is an extension of the pre-
vious method. By tracking the “velocity” of the parameter estimate through the most recent
parameter position estimates, the next position of the paraineter may be predicted. If the distance
between the predicted location and the current center of the filter bank exceed a presct limit, the

bank 1s moved.

Probability Monitoring via the equations already presented also provides an indication of
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the most likely location of the parameter. The computed probabilities are compared to a preset
threshold or simply the largest probability to determine if the center of the hlter bank should he

moved to the filter that is producing the probability exceeding the threshold.

Parameter Estimation Error Covariance Monitoring provides a means for determining
whether the bank should be contracted from a coarser discretization, as shown in Figure 1.7, The
parameter estimation error covariance, given by Equation (1.24), is monitored. The parameter

covariauce can be readily computed as:

P.t) = E{{a-a())a- alt, ) 2 =2,
K
= Z[a —a(t)[a—al))" - petts) (1.24)
k=1

within the MMAE or MMAC aigorithm. When the norm of the vector PP, {alls below some presct
threshold. the bank may then be contracted. Monitoring the parameter estimation erron covariance
1s not effective for expansion decision making, however, since Equation (1.24) depends on the enrrent

choice of ap and is “artificially bounded from above by the current size of the bank™ [2¢].

Wihen the parameter undergoes a jump change or is changing rapidly, the closely spaced
filter bank may not be able to track the parameter adequately. By expanding the filter bank, the
parameter is reacquired and a decision to contract the bank around the new parameter location can
be made. Returning to Equation (1.22), it is seen that this equation is dependent on the residuals,
ri. Ifall the likelihood quotients are large and close in value, then a good estimate of the parameter
wocation 1o the parameter space is not possible. Since the estimator does not ~know™ where the
paramieter is located with any certainty, it 1s more appropriate to expand the bank rather thaa

move it [22].

Hentz found that probability monitoring is the method of choice [22:95]. Lashlee used the

same technique and observed the effects of varying the parameter space discretization on the ability




of the filter to track the true parameter location [15]. Both of these efforts present an extensive

discussion of the decision logic.

The parametor estimate of the moving bank MMAE/MMAC algorithin should be as nearly as
good as the full bank estimate, provided that the vast majority of the full-scale MMAE algorithm
parameter probability weight is contained within the moving bank, but problemis have heen seen
in five years of thesis research [8, 22, 6, 11, 15, 24]. The tuning of the noise matrices. Q and R.
the discretization strategy used to generate the discrete parameter points, as well as the tuning of
the other parameters in the filter algorithm, apparently affect the system rather substantially, Van
Der Werken's thesis shows that the number of states used in the state space representation of the
truth model may be a very nuportant cause of poor tracking performance of the NMINAE/NMNAC

uscd to control the space structure model, and so this robustness issue warrants further study,

1.2 Problemn

The computational burden of a fixed-bank MMAE/MMAC implementation s higher than
a moving-bank estimator/controller, and so the moving-bank algorithms are preferable for imple-
mentation. The problem remains to determine the robustness of the estimator and/or controller
to unmodelled effects, whether it be a moving-bank algorithm or a fixed-bank algorithm using a
necessarily coarser parameter discretization to maintain computational feasibility. Therefore, the
mismatch of the 24-state truth model and the 6-state filter model is investigated. The selected truth
model is assumed to model the real world adequately. This thesis research will provide insight into
the effects of the mismatch and determine the number of filter states required to track the states

and control the space structure adequately.




1.3 Scope

The research performed investigates the control of a large space structure represented by
a rotating two-bay truss as developed by Karnick [11]. The truss is allowed to move only 1
the x-y plane of Figure 1.1, Restricting the motion to this plane allows for the investigation of the
MAAE/MMAC algorithim without overly complicating the model with imotion out of this plane. e,
without coupling of x-y plane, x-z plaue, and torsional motions. Masses attached 1o the structure
were added by Karnick to allow changes in the mass matrices to obtain a more realistic space
structure model. This situation represents the effects of depletion of fuel tanks on the strueture.
The model developed by Karnick is described in terms of mass and stiffness matrices obtained from

a finite element analysis [26].

The parameters of interest for this thesis are the mass and stiffness matrices that appear in
the system dynamies equations through modal analysis 25, 11]. Tuning of the Q matrix describing
the uncertainties associated with these dynamics model matrices is continued [rom the efforts
of Karnick [11], Lashlee {15]. and Van Der Werken [24]. Additional tuning effects dne (o the
measurement noise covariance matrix R are also considered. Thie measurcmeut noise covariance
matrix was considered to be diagonal in previous theses [15, 24:94.77]. A diagonal matrix indicates
that the measurement noises are independent, i.e. the measurement of the velocity at node 1 1s
not affected by the measurement of the velocity at node 2. R will be modified to include non-zero

off-diagonal values that are chosen in a physically motivated manner.

1-20




1.4 Approach

Previous thesis efforts concentrated on observing the estimation and control of the filter-

modeled states. The filter-model states used in the previous research effort are defined by:

x;:

Rigid body mode position
First bending mode position
Second bending mode position
Rigid body mode velocity

First bending mode velocity

Second bending mode velocity J

The truth model vector is correspondingly assumed to be composed of the rigid body and first

eleven bending mode position states, followed by the corresponding twelve velocity states:

Lo

3

L4

Rigid body mode position

First bending mode position

Eleventh bending mode position

Rigid body mode velocity

First bending mode velocity

Eleventh bending mode velocity

(1.26)

An error vector, ¢, was used by Van Der Werken [24] for evaluating esti:nator performance, given

hy:

QZTX("‘x]
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The subseripts indicate whether the variable is a filter variable, £ or the truth maodel variable, .
The mateix T is a 6-by-2+4 transformation matrix which moves the states representing the velocity
of the rigid body mode and the first two bending modes to the fourth, fifth. aund sixth veeror
positions. Van Der Werken cotnpared the truth and filter states (an estimate in the filter case)
diveetly. thus asking whether the filter estimated the truth model states associated only with the
first three modes. This thesis effort will instead ask if the reduced order filter can estimate (or if
the reduced-order regulator can control) the true total shape of the truss (due to all modes’ effeets).

Furthermore, it will attempt to answer robustness questions, i.e. will the controller work with a

reduced state filter model. by gradually increasing the higher order state effcets into the systen,
The new error term will be defined as the difference hetween troe and extiared peositions
and veloetties at the aceelerometer and thruster (used as control clements) Iocations on the Triss.

and at the hib, of Vigure 1.1:

e:}[tX(—Hfo (1.28)
where
Hj, O3x3
H; = e (1.29)
O3x3  Hya,,,
6X6
and
Hfl- 3 /\II:;_ 9 0 ()
H, = > o (1.30)
0 0 PIfQJxJ AI{lvaxu

6324
where Hyp corresponds to the effect of the upper nine modal position states, and H,,. (o the offeet
of the upper nine modal velocity states. Hy will provide a means to observe the elfeets of 1the
mnodelled states in the operation of the estimator/controller. The sealar nnitiphier A will be
varied from 0. the case where the truth model is of the same order as the filter model. to 1, the
case where the [ull effect of all the states of the truth model are being incorporated. By gradually

increasing A, the effects of the unmodelled states should become apparent. The requirenent for
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adding more states 1o the filter model is determined by how large A becomes for the controlled
syatem to become unstable or exhibit other unacceptable behavior. After quantifving the effects of
the unmodelled states, the Hyp and Hy, matrices may be further partitioned to determine which

states are needed for a robust controller.

The robustness of the estunator/controfier is the primary concern of this thesis. Robustiess
is the ability of the estimator/controller to function properly in the face of nmmodclied effects due
to reduced order filter models. Slowly varying parameters and jump changes in the parameters of
interest will be explored as well as stationary paraineters. If the addition of more states is indicated,
the work perforimed by previous thesis efforts will be repeated with a new filter strnetnre bhased on

an appropriately higher dimensional state vector.

The Qp and Ry matrices will be varied in such a way that a useful tunmuyg strategy can
be establishied. Previous efforts concluded that the tuning of these matrices are critical to the
robustness of the controller [15, 24]. The previous research also concluded that the LQ regulator
weighting matrices are also critical to the performance of the controller. The previous research
uscd a tuning process that may not be practical in all cases. Qy was held fixed while Ry was
varied until best performance was obtained. Then Ry was fixed and Qg was changed. Once the
values were fixed in this manner, the remainder of the research was performed. Van Der Werken
experienced difficulty in the tuning process: Ry was appropriately established as R, plus additional
terms to account for the impact of the 18 unmodelled states {this will be discussed in detail in the
following chapters), but Q, was incorrectly equated to Qs as Qg was varied to accomplish tuning.
A way to perform true tuning of Q; and Ry shall be incorporated into the software, and the tuning
philosophy of Qy and Ry will be researched. In addition, once the noise matrices have heen tined.

the process of tuning the LQ regulator weighting matrices will also be evaluated,

Investigation of the difficulties encountered by previous thesis research in tuning the weighting

matrices will be continued. Once the weighting matrices have been tuned. the parameters will be
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allowed to traverse the parameter space slowly to study the ability of the MMAL/MMAC algorithins
to maintain control. Jump changes in the parameters will also be investigated. "The parameter space

discretization itsell will be evaluated on the basis of Lashilee's recommendations [15].

Lashlee observed that the parameter identifving capability of the estimator was enhaneed by
proper diseretization of the parameter space [15:115-117). The choice of parmineter diseretization
levels s determined by holding one parameter constant and varying the othier parameter i the
truth maodel. From the data gathered from a single filter from the bank natehed against the
changing truth wodel. s error plots are used to determine the diseretization Jevels thar vield
a given percentage degradation tn the likelihood guotient given by Equation (1.22). Thus. the
discretization is extablished such that the elemental filters (and controllers) in the bank are readily

distinguishable from one another on the basis of their residual characteristios.

1.5 Summary

The retnaining chapters of this thesis cover the following areas. Chapter 2 develops the
algorithims used in the MMAE and MMAC portions of this research. including decision logie for
moving and expanding/contracting the bank of filters/controllers. The modelling of the large space
strocture, the two-hay truss structure, is developed in Chapter 3. The simnlations performed by
this thesis will be explained i Chapter 4. Chapter 5 presents the results of the rescarch, wirh

corresponding conclusions and recommendations presented in Chapter 6.
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1. Algorithm Development

20 Introduction

Tl algoro g development {or the control of a large space structiure nsing MNAF/ MMAC
L net chianged appreciably over the last three thesis efforts performed by Karniek [115-887
Lostidee TEA 1450 and Van Der Werken [240:23-13]0 This chapter presents the developiment of the
aleorithims, with little modification from the previous efforts, New issues and/or ssues crinieal o0
this thesis rescarch will be stressed.

3

2.2 Bayeswan Multiple Model Adaplice Estimation Algordhm Devcdopment

The basic development of the MMAE algorithm was presented m Chiapter 10 The following
material is presented for completeness. A thorough treatinent of this subjeet b5 prosented Ly

Miavheck [10:129-136].

The system weder investigation s considered to be s dequately modelled byl Tinear stoctis,

G differenee caquation

)_((/H»I) = 'I)(,H-I -fx'))_((ll) + Bri(’l)’.‘(’i) + GI{(/,)V_V,{(/,) (2.0

from which measurements are taken by samphing via the hinear relationship

As stated o Chaprer 10wy, and voare assumed to be independent of cach other and zero-mean,

white Ganssian diserete-time noise proeesses. The statisties of interest are:

[

E{w, (t)wh)) = Qult)#, (1) g

[
'




Edvttav ()} = R85t (2.1)

where Q4 ) 18 positive senidefinite and R(#;) is positive definite for all £, The initial condition of
the state s not gonerally known with absolute certainty and is deseribed by means of o Guussian
random vector that s assumed to be independent of w and v. The mean and covavianee of the

iitiad state conditton are given by:

E{)‘((f())}:)k() 250

E4x(t) = xo][x(ta) = xu]"} = P, (26

The above cquations provide a starting point for observing the systenm of interest [19:70]. Fhe
above equations have been presented with little explanation of the actual variables. The variables

of interest to this point are [1') 2'1]:

o x(/,) = n-dinensional state vector

o B(f, ). 0,) = state teansition matrix which transitions the state from 6 1o 4,4
o u(l,) = r~dimensional deterministic input vector

o B,i¢;) = control input wiatrix

o w,(/,) = s-dimensional white Gaussian dynamies driving noise veetor

o G(1,) = nolse mput matrix

e 7(t;) = w-dimensional measurement vector

o H(1;) = mwasurement matrnix

o v/, ) = m-dimensional white Gaussian measuremnent noise veetor

From Mayvheck [19:129-133], let o be the vector of uncertain parameters for the model under
study. The uneertain parameters affect any or all of the matrices deseribed above. The purpose of

the Bayvesian estimator is to compute the conditional density function:
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whicl is the conditional density of x and a given the measurement history through the current tine,
Z,. where Z, is composed of partitions equal to the realizations of z{fy). z(/.). .. .. (1), Based on
the assutied mods I the first density on the right hand side of Equation (2.7) is Ganessiaa, with

mean xil ") and covariamee P(IF), for a specific value of the parameter vector an These variables

are computed by Kalman filter for that particular parameter vector a.

Ilie parameter vector a can assume values in the continnous range defined by
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where 10 0s read Eoclidean p-dimensional space. The paraimeter vector oy be e et o
corstant. it ey be slowly varving, or it may undergo jump chianges™ [15:20]0 The natnre of a
Letng continuous would cause a problem computationally since the calenlations to salve Fouation
(2.7} would require an infinite number of separate Kalman filters and integrations that would make
online usage of the Biayeslan estimator prohibitive. To allow online computation, the parameter
space is diseretized, The uncertain parameter vector might be reasonably defined as taking one
of the values in the finite set {ag, aq, ... ax}, where each discrete value is chosen for optimal
performance of the control system. The discretization of the parameter space is ane of the subyjeets
of this thesis offort. Each discrete value ap has an individual system model associated with it
requiring recomputation of BEquations (2.1) and (2.2). Before the calculation of the conditional
wiean and covartance of the Ath system state is presented, the hypothesis condinional probability

will be defined.

The hiypothesis conditioral probability is defined by

pelti) = probla=a, | 2(t) = Z;}

SaceoaZi i L Ziope(tio) (2.9)
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which shows that the conditional probability of the k-th filter being the most correct filter is the
product of the probability density of the most recent measurement (for a given diserete assuimned
parineter value and the observed measurement history) and the nrevions conditional probability,
divided by the sum ot the & probability density and conditional probability prodacts (s forcing

the pi(€)'s to sum to one for all t;).

The state estiinate produced by the estimator based on the assumption that a is the correet

parameter vector is given by [19:131]:

(1) = E{x(t:)]201,) = Z,)
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K
D %t pr(ts) (2.10)
k=1

The state estimate is the sum of all the probabilistically weighted estimates generated by the
A Kalman filters, where the hypothesis conditional probabilities pi(f;) are the weighting factors,
The conditional covariance of the state is caleulated in a similar fashion. again weighted by the

hypothesis conditional probabilities, and is given by [19:131]:

Ptf) = E{[x(t;) — %(tHx(t) — %7 | Z(t) = Z4)

i

|
S Pkt {PL(t) + () = x(xe(tF) = x(1)]T) (2.11)
k=1

The conditional covariance Pr(tF) is the “state error covariance™ associated with the Kalman filter
based on the paraneter ag. The conditional covariance is dependent on the measurement history.,
as shown in Equation (2.11). and therefore is not precomputable. However, neither is it absolutely

required for online use of the MMATL algorithm.

‘The multiple model adaplive estimation algorithm developed above is an adaptive filter and
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the structure was shown in Figure 1.3, The discretization of the continuous parameter space into
a limited number of points makes online use of this algorithm feasible. As each measuiciint z;
becomes available at time ¢;, the Kalman filters generate residuals which are used to generate new
hypothesis conditional prebabilities. With this information available, f@«!.).E)IZAt._x (2 bag. Z,_1)

needed i Equation (2.9) may be computed for all & as:

i
f’u\' [ (Z,‘lil-,Zi_ ) = o : (‘X]){<}
AR VR k 1 (27)% ,Ak(’i) l? |
[ -
{1 = A{=grit)AT et) (212)
where the kth Kalhuan filter generates Ag(t;) as
A(ts) = He()Pe (47 YHE (1) + R (1) (2.13)

The A implemented filters thus provide the terms to evaluate the conditional probabilities required
to determine the state of the system given the current measurement. Usiug the weighting technique

scen in Equations (2.10) and (2.11), the state estimate x(t}) is generated.

The other estimate that may be desired or required is thai of the parameter veetor. The

conditional mean of the parameter vector at time f; is given by [19:132]:

a(ty) E{a(ti) [ Z(t:)} = Zi

H
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> aupi(ts) (2.11)
k=1

The covariance of the estimated parameter vector gives an indication of the precision of the estimate,




amd it can be estimated via [19:133)]:

Ef{fa—a(t))la— a(t))" [ 2(t) = 2} = ) _[ae — alti)]fae — alt)) pe(ts) (2.15)

It should be noted that neithier the caleu!-tione of the narameter estimate nar the covarianee of

thie parameter estimate are required for the calculation of the state estimate.

For the case of non-varying parameters, the MMAE has been shown 1o he optimal and
converge [7]. The situation examined by Hawkes and Moore showed that the MAALE converged to
the filter that matched the actual parameter or was closest to the true paratneter 7], The previous
theses did not develop theoretical results for the case of varying narameters [6. 8011, 15, 21]. One
of the concerns presented by the previous theses is that the filter may converge to one parameter
value and lock on to that value. If the real parameter remains at that location. the filter would
perform correctly. However, if the parameter is likely to vary, the filter would be of Little use in
providing a state or parameter estimate. Dasgupta and Westphal showed that the algorithim may
couverge to the wrong paramecter value for the case of unknown biases in the measurement process

[5:614-615].

To prevent the problems discussed above, the addition of dynamics psendonoise 1o the
maodel is used.  “Essentially, the dominant aspects of the dynamics are included in the model,
and one accounts for the many neglected effects by introducing additional uncertainty mto the
model™ [19:25]. The psendonoise is added to each filter. The difficulty of using this approach is
how much pseudonoise to add. If too much pseudonoise is added, as in the case where Qg 1s made
artificially large to account for the inadequacy of the propagation model, then the propagation
equations may not remain usable for online calculations. The addition of excessive driving notse to
the model will mask the difference between a good and bad propagation model. The addition of too
little dynamics driving noise will give an unrealistically “perfect” perspective of the dynamics model

and cause the filter to use the model’s characteristics above any real-world measurement inputs.
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The MMAE algorithin has the additional burden of using this satne dynatnics nose thronghou
the filter space for thie implementation used in this research. The tuning of Q. may be diflicult 1o

achiieve with a single-valued matrix.

The selection of adequate measurement noise is not new to the MMAE/AMMAC algorithms,
but is a Kalman filter probleni in general. Consider BEquation (1.13) which provides the Kalian
filter gain. [ R were set to too large a value, K (or at least many of its clements) would tend to
go to zero, causing the state propagation equation to stop using the residual in changing the values
of the states. Likewise, the state covariance would also remain relatively unchanged due to a very
small Kalman filter gain value. The filter must “realize” that imperfections in the dynamies mode!

exist without being made useless in the process. too.

If a particular filter is nearest to the true parameter location. the residual from that filter
would be expected to he smallest in magnitude (relative to the filter-computed covariance Ay of
Equations (2.12) and (2.13)) of the active bank of filters. Equation {2.12) would then provide
the largest conditional density value for this filter and when applied to Equation (2.9), would
ultimately yleld the highest probability to the “best” filter. The two equations mentioned show
that the filter’s performance is dependent on the differences between the residuals of the filters in
the bank. Thus, it is essential to ensure, by the manner of discretizing the parameter space and by
the means of tuning each elemental filter, that the residuals of “good” versus “bad” filters have very
distinguishing characteristics. The value of Ay would begin to dominate however if the residual
values were of the same magnitude. Under this condition, the p;’s are dominated by the Ay since
the residual values are equal. The conditional density then becomes dominated by the filter with
the lowest Ay and diverges. “Unfortunately, no rigorous general proofs are available concerning

the asymptotic properties of the hypothesis conditional probabilities” [19:133].

Previous theses prevented filter lock by fixing a lower bound ou the py [6. 8, 11,15, 24}, The

hypothesis conditional probabilities are monitored and when one or more probabilities fall helow




the threshold, they are set to the minimum and the entire bank rescaled to maintain the unity sum

of the probabilities.

2.3 Moving-Bank Algorithm Development

The MMAE filter algorithm presented in the previous section presents an inmense cotnp-
tational burden if implemented i a full bank form, i.e.. a filter for every diserete point in the
parameter space. To lessen the computational loading, the technique of a moving bauk of filters
has been investigated in the previous theses. Maybeck and Hentz performed the original research
that has direct application to this thesis research [22]. Their work showed that the full bank of
filters could be replaced by a moving bank of filters that could follow the changes in the parameters
of interest [15:27]. The techniques examined for moving this smaller bank were briefly discussed in

Chapter 1 and are presented here in detail.

2.3.1 Moving the Bank. The moving-bank MMAE is a subset of the full-hank MMAE.
Conceptually, the bank is centered around the best estimate of the parameter. The knowledge of
the parameter may be uncertain a priori or the parameter location may change. The decision logic

used to move the bank is critical in these v stic cases {8, 11, 15, 22].

2.3.1.1 Resitdual Monitoring. The effect of the residuals on the calculation of the prob-
ability density was seen in the exponential term of Equation (2.12). The exponential term contains
a quadratic factor of the residual vector and A, a function of Hy, Ry, and the covariance of the

state estimate of the k-th filter. Let this term be defined as the likelihood quotient L (t;):

Le(t:) = el (8) AL (ti)re(ts) (2.16)

Considered in the scalar case, the likelihood quotient is the ratio of the residual squared divided

by the filter-computed variance for the residual [22:92]. Consider the effect of the parameter
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being outside the area of the filter. The residual values would all become large and drive the A
likelihood quotients high. A preset limit could be determined through performance evaluations
such that, when the smallest L; exceeds some value T, an appropriate {ilter movement action
could be determined. Additionally, the filter closest to the true parameter should have the simallest

likelihood quotient and thus provide an indication of where to move the bank.

The use of residual monitoring is limited however to situations where the system is not subject
to “single large samples of measurenment noise” [22:92]. Examination of Equation (2.16) shows that
the values of Li(4;) would all rise appreciably in the face of a sudden high valne of v(f;) which

affects the residual directly through the realized measurement value.

2.3.1.2  Parameter Position Monitoring. Equation (2 11} gave an expression for the
estimated parameter location based on the K discretized parameter locations and hypothesis con-
ditional probabilities. The estimated parameter location is used 1 this technique for deternmning
where the center of the bank should be. If the parameter location begins to move to the edge of the
current bank or to move to some predetermined distance from the current center. then the decision

to move the bank could be made.

Reviewing Equation (2.14) shows that the strength of this technique Js that it relies on a
Listory of measurements rather than just on the single current measurement. However, while this
technique is not prone to the measurement notse problem of residual monitoring. 1t does require
a prior) knowledge of the parameter location or at least sufficient knowledge to place the range of
the bank around the true parameter location. For the case where the parameter is not mitially
known, the bank may be set at a very coarse discretization that covers the entire admissible range
of parameter values, and then changed to a finer discretization as information about the parameter

is developed by the estimator.
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2303 Paramcler Posttion and “Velocity™ FEstonatc Mondoriy, Uhis techuique s
an extension of the previous parameter position monitoring technique. I the parameter is varying
slowly, the position and “velocity” can both be monitored. The parameter velocity is the chauge
in paraieter location hetween sample periods or over an extended period of tiime. The velocity
vector could be used to estimate where the parameter will be at the next sample period. I the
predicted location is outside the current bank of filters or beyond a certain criterion distance from

the current center, then a move of the bank is indicated in the direction of the velocity vector.

2.3.1.4  Probability Monitoring. Monitoring the hypothesic conditional probabilities
generated by Equation (2.9) provides insight into which filter is located nearest the true parameter
location. Using a preset threshold, the bank can be moved in the direction of the filter providing the
maost correct paranteter ag, t.e., the one with the highest py value. The bank secks to center itselt on
the filter which is based on the most correct assumed parameter value, As with parinneter position
tmonitoring, probability monitoring uses a time history of ineasurements and is less snsceptible 1o

radical changes due to individual large realizations of measurement noise.

2.3.2 Contraction and Ezrpansion of the Bank. The size of the bank need not be fixed and
the bank filters need not be at adjacent finely discretized points in the parameter space. 1If the
active filters are not associated with adjacent discrete parameter values, the bank behaves as a
coarsely discretized moving bank. A coarsely discretized bank was illustrated in Figure 1.7, The
estimates provided by such a bank may not provide as accurate estimates as a bank where the active
filters ocenpy adjacent discrete parameter locations. It does offer a higher probability that the true
parameter location will be within the bank however. This is a good attribute for initialization
of the moving bank since initial convergence has a higher probability of occurring. Maybeck and

Hentz found that an initial coarse discretization of the bank improved parameter acquisition [22].

The bank may require expansion for the case of a jump change of the parameter focation.

Using residual monitoring, the jump change is detected and the bank expanded. The likelihood
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ratios of the implemented filters are expected to be large. exceeding some threshold, using residual
monitoring {11:29]. Ounce the bank has been expanded and a new parameter lacation estimate
made, the bank may then be contracted around the new location and the algorithin proceeds with
new estimations and control inputs as before. When the bank is coarsely discretized, monitoring
the parameter estimation error conditional covariance, P, provides an indication when to contract
the bank. When the norm of this matrix falls below some chosen threshold, “the bank can be

contracted about the parameter estimate” [22:92].

Karnick proposed an alternative method in which the probability of a side of the bank was

monitored such that

ot = Pside Ji(2(11))
Psidelti Zq e S5 (200))

is the probability associated with each side [11:27-29]. The threshold logic for contracting and
expanding the bank are also given. If the side probability falls below somie threshold, then the side
is contracted. “Conversely, if the probability associated with a side vises above some threshold,
the remaining three sides are ‘moved in* " [11:29]. The third possibility involves evaluating all four

stdes, and when the sum of the sides’ probabilities fall below some threshold, the bank is contracted,

2.3.3 Imdtialization of New Elemental Fillers. The issue of initialization of new elemental
filters, after the bank has been expanded or contracted, has been studieu by Hentz [8:26-30] aud
RKarnick [13:29-32]. The techniques developed proved to be computationally intense. Since there
appears to be no loss of performance from the equal redistribution of the discarded filters' prob-
abilities among the new filters [15:36] , this will be the method used in this thesis effort. For the

case where all nine filters are new, the probability will be divided eqnally, i.e., pi = % for all k.




2.4 Stochastic Controller Design

Both the moving-bank and fixed-bank MMAE algorithims can he used with several stochastic
controller designs [20:9-20], [22:93], [8:33-10]. The “assumed certainty equivalence design™ method-
ology presented by Maybeck [20:241-245] will be used. As a form of feedback controller syvnthesis
technique, this method separates the controller into the cascade of an estimator and a deterministic
optunal control function. This method is also known “as the forced or heuristic certainty equiv-
alence design technique™ [20:241]. While this technique leads naturally to MMAF-based control
{using the x of Figure 1.3 prenmltiplied by a single gain —G7(a) evaluated an the basis of the
estimated parameter), the implementation used i this thesis is MMAC conrrol, which primarily

differs i the implementation of the controller: the structure shown in Figure 1.1

The estimator for this thesis is the moving-bank MMAFE. The systems developed for cachi
paramecter location are assumed to be linear and time invariant with stationary noise. The estimate
of the state is propagated with the previously developed equations (from Chapter 1. Equations
(1.10) to (1.15), and in this chapter). Likewise, the system is updated using the update equations

developed previously.

Each controller developed is a linear, quadratic cost, full-state feedback optimal deterministic
controller based upon a specific assumed parameter value of a. The cost weighting matrices in the
quadratic cost are constant, and the error state space formulation is time invariant [18:29]. The
output of the controller is desired to be the optimal control function, u™, such that the quadratic

cost function

is minimized [20:10]. The variables in Equation (2.18) are:
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J = cost function to be minimized
X = state weighting matrix
X; = final state weighting matrix
U = control weighting matrix
N = number of sample periods from ¢g to t
tny1 = final time
tx = last time a control is applied and

held constant over the next sample period

If the assumption of a linear system driven by white Gaussian noise is used, with a quadratic
cost funection given by Equation (2.18). then the optimal coustant-gain discrete linear fredback

control law, assuming full-state access, is given by:

wr(t) = —GI(t)x(t) (2.10)

The full state access is replace via assumed certainty equivalence by the state estimmate provided by
the MMAE elemental filter associated with the controller, each being based on a specifie parameter

value ag. The controller gain is given by [20:16]:

Gi(ti) = [U(t;) + BdT(t,-)Kc(tiH)Bd(ti)]”l [BY(t:)K.(tig1)B(tig1. 1) (2.20)

which is also part of the solution of the backward Riccati equation solving for K.(¢;) [20:15-16}:

K.(t:) = X(t)+ @ (i1 K (big1)B(Ligr. 1)
~[®7 (tigr, 1)K (1) Ba()][U(L) + B (1)K (i 1)By) ! (2.21)

x[BT () K (tig1)B(tigr, i)




as solved backward from the terminal condition:

Kc(f,H,[):Xf [..

[
(2
[

The selection of the weighting matrices found in Equation (2.18) is inportant in determining
the performance of the controller. By choosing an appropriate X, the importance of maiutaining the
structure’s rigid body position may be stressed algorithmically. The use of a diagonal matrix with
large values emphasizes the importance of maintaining the states near zero. T'he input weighting
i trix must also be chosen with care stuce it influences the amount of control encrgy the controller
is allowed to use in order to accomplish the purpose of praper state control. the degree that the
individual states are allowed to vary during the sample period. Tuning of the control and state
weighting matrices “is usually required, in analogy to tuning of Qg(#;) and R(¢;)...7 i the Kalman

filter [20:10-11].

The relationship given in Equation {2.19) is also the solution for the deteriministic LQ optimal
control problenmi with no driving noise. Since we are assuming that the system is noise-corrupted
and only notse corrupted measurements are accessible versus perfect knowledge of the state, the
state used in Equation (2.19) is replaced by the state estimate x(¢}) provided by the elemental
filtler based on the parameter value ag. As seen in Figure 1.4, once the state estiination has been
passed to the controllers and the hypothesis conditional probabilities computed. the control inputs
are multiplied by their appropriate probabilities and then summed to provide a control input to

the system.

2.5 Summary

The algorithins for the moving-bank MMAE and MMAC have been developed in this chapter.
The moving-bank MMAE should provide a substantial computational savings compared to the full-

bauk implementation. This computational cost savings is carried through to the controller. sinee
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not all the elamental control inputs need to be calculated. A primary assuription through this
developrient was that the system of interest could be described ina linear nianner. Without tlns
assnmption, the problem would become extremely difficult to addreess with an on-line contraller.

The next chapter develops the inear model used in this and previous theses

2-15




L Rotating Two-f8uy Truss Model

S Intireduction

Plie control of o Targe flexible space strueture is belng investigaeed using o two oy fross

el The stroetnee is allowed 1o rotate about a pivot point. the hsh. The crioiuad st

tocdelmvestigated by Lyneh and Banda [17:13-16], does not have this pivetime foatire, b s

dynanne charneteristies are thoroughly understood. The use of the struetire atrabod o 0 Lol

atlows for the study of both rigid body rotation and hending mode dy nansies 1150070 The roasine
medel Bias ot been changed sinee it was developed by Karniek [T139-95] and used Ly Lashloe

(T entand Van Der Werken [240:4-63] 0 and it is shown u Fignre 3010 This chapter prosents the

maderial from the appropriate chapters of the last three theses,

3.2 Models: Sceond Ovder and Stalc Space
A mathematical maodel is required 1o determine the feasibility of the MM AE/NNMAC conneol
techimique for the Targe spiawve sconcture, The second order differentinl equation “which governs the

fexneal vibirations of aostrueture™ [17:3] s given by [11:39] {15470 {2411

Me(y+ C )+ Ke() = F() = Fi(H) + Fo(n) 310

where the left hand sideis the sum of the products of mass and acceleration, daraping and velocity.
aud stiffuess and position. The right hand side of Equation (3.1} is actually composed of a deter
ntistie component . Fi{u.t), and a noise component, Fz(1). As noted in the above explanation, the

capital letters on the left side of Equation (3.1) represent specific structure characteristies detined

M = constant nxn mass matrix
¢ = constant axn damping mstreix
31
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N = constant nxn stiffness matrix

The n-dimensional (#) vector i Equation (3.1) represents the position or physical coordinates
of the structure.

If the external disturbances are assumed to be white Gaussian noises, then FEquation (3.1) is

changed to:

Me(f)+ Ce(t) + Nr(t) = —bu(t) — gw (32
where (15048
u(t) = r-dimensional vector actuator inputs
b = axrmatrix identifying position and velocity

relationship between actuators and controlled variables
w = sdimensional vector representing the dvnamics
driving noise, where s is the number of noise inputs
¢ = uxsmateix identifying position and relationships

between the dynamics driving noise and coutrolled variables

If the states of the system are taken tc be composed of the position and velocity vectors, then

Equation (3.2) may be written in state space form as [15:49]:

X =Fx+ Bu+Gw (3.3)

where the states are stochastic processes sinee they are driven by noise as well as o deterministic

input. The state vector is given by [15:19]:




systemn matrices are given by:

()leﬂ I”XH
I = (:5.-)}
—M T Ry =M e |
Iuxin
Onxr
8= (3.49)
L —i‘[—lbnxr
J42nxr
On)(.t
o (3.7)
—Jl“ly,,x,
L 4 2nxs

One of the assumptions taken in this thesis is that the measurement noise enters the svstem
at the same location as the actuators (thrusters). This assumption causes the g and b matrices,
and therefore GG and B, to be equal and the dimensions r and s are equal, too. The locations of the

actuators are shown in Figure 3.1 and are discussed in detail later ta this chapter.

The states are position and velocity contributions of the various rigid hody and bending modes
to physical position and velocity variables at arbitrary points on the structure which are measured
by accelerometers. The accelerometer outputs are integrated once for velocity and integrated again
for position. Since the velocity and position measurements are derived in this manner, the position
and velocity measurements are co-located. The co-location of these measurements would imply a
highly correlated noise measurement matrix, R, and corresponding non-zero off-diagonal elemients.
However, for purposes of simplicity, R. will be assumed to be diagonal. The actual measurement of
these virlnes would be transformed via an analog-to-digital conversion (ADC) so that the commputer-
iiplemented control algorithm can be used. The ADC process has inherent errors due to finite
wordlength. For the purposes of this thesis, the ADC error is assumed to be small and will be

acconnted for by increasing the measurement noise matrix R.
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The model of the measurement of the states is given by {11:42], [15:50], [24:47]:

H, 0
%= Xty (3.%)
0 H,
mx2n
where:
m = number of measurements
v = an uncertain measurement disturbance of dimension
m and modeled as a zero-mean white Gaussian noise
of covariance R
H, = position measurement matrix
I, = velocity measurement matrix

Since the position and velocity measurements are co-located, H, = H,. The equations arc
highly coupled, that is, the equations are not independent. This situation is not desirable and
therefore modal decomposition is used to transform the sets of equations into independent modal

equations.

3.3 Modal Decomposition

The equations just developed are transformed into a system of equations that are decoupled.
“I'he general response of a complicated system can be broken down into the sum of n simple
responses” [3:260]. The assumption that the matrices are constant allows the modal decomposition
to be useful. If the matrices were variable, then the advantage of using modal decomposition would

be Tost [3:262].

Following the research performed by Lynch and Banda, the damping matrix is assumed to

be a linear combination of the mass and stiffness matrix [17:4]:

C=uoM+ 3K (1.9
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Due to the transformation from physical to modal coordinates, the actual determination of a and

3 are not required.

If the modal coordinates are denoted by §2, the relationship between the modal and physical

coordinates is given by [17:5], [11:42], [15:51], [24:48]:

r=T1 (3.10)

where 7 is the n x 1 transformation matrix composed of eigenvectors determined from the solution
of [11:43].[15:51].[24:48], [L7:5]:

GMT = RT {(3.11)

Note that Equation {3.11) relates the inodal frequency, w, the mass matrix, and the stiffness matrix.
The damping matrix is not involved in the solution of thc eigenvectors. The solution of o and .3
arc not explicitly found since they are not required for the modal decomposition. The values of «

that satisfy Equation (3.11) are called the natural or modal frequencies.

Substituting Equation (3.10) into Equation (3.3) yields the transformed state space cquation
to [11:43), [15:52], [24:48]:

x = Fx+ Bu+ Cw (3.12)

where the state is now defined as {11:43]:

x = (3.13)

The other matrices from Equation (3.3) are also transformed and calculated as [11:43]:

N 0 i
F= (3.11)

~T-'M-'KT —-T-'M-'CT

L 2nx2n
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The open loop plant matrix may also be written in terms of the undamped natural frequencies and

the damping ratio of the i-th mode. F becomes [25:1769]:

. 0 I

F= (3.16)
—w?  ~2Gwi

2nxMn
Finally, the equation deseribing the mcasurement process may be rewritten as [11:11}

HT 0

z= xX+v (3.17)

0 H,T

The use of modal coordinates allows the following assumptions to be made [17]. [11:14].
[15:54]. The structural damping is assumed to be uniform tiiroughout the structure. The damping
cocflicients selection does not play a role in the undamped natural frequencies and therefore may
be selected based upon design requirements. The previous theses used a value of ¢ = 0.005 based

on work performed by Lynch and Banda [17] and as representative of many space structures.

The mathematics of the model have been developed in this section. The parameters used in
the equations of this section are derived from finite element analysis of the structure. The next

section provides a detailed explanation of the structural model itself.

3.4 Two-Bay Truss

The two-bay truss has been discussed in general terms to this point. This section gives a
physical description of the model used and describes the sensors and their locations. The original

truss model was used to study the effects of structural optimization on optimal control. Tt consisted




Table 3.1. Structural Member’s Cross-Sectional Areas

Member | Area (in”) || Member | Area (in®)

a 0.00321 h 0.00328

0.00100 i 0.00439
c 0.00321 ] 0.00439
d 0.01049 k 0.20000
e 0.00100 1 0.20000
f 0.01049 m 0.20000
. 0.00328

of the two-bay truss attached to a fixed body [17:13].

3.4.1 Background. The model used by Lynch and Banda was modified by adding non-
structural masses at nodes one through four to simulate a more realistic large space structure. The
masses model various types of loads that might be found on a large space structure, such as fuel
tanks and control jets. The model was further modified by attaching the stracture to a huly with
a mass much greater than the truss. This configuration approximates a large space platforn with

appendages extending from it. This configuration also allows for rigid body nmotion to be examined

The rigid body motion is established by letting the hub node remain fixed and the truss move
around it in the z-y plane as shown in Figure 3.1 [11:47]. The rods connecting the truss to the hub
are much larger in diameter than the truss members, causing this link to be very stiff compared to
the truss rigidity. The addition of this physical link does introduce high frequency modes into the

system but maintains the low frequency modes of the original fixed structure [15:57].

3.4.2 Two-Bay Truss Construction. The thirteen rods that make up the truss structure are
listed in Table 3.1 with their cross-sectional areas. The members are made of aluminum which has
a odulus of elasticity of 10 psi and weight density of 0.1 pounds per cubic inch. The sizes of rods

k. L and m were arbitrarily selected to obtain a stiff link between the truss and the hub.

The non-structural masses are indicated in Figure 3.1 and are masses of 1.294 {b — sec®. This

mass is very large compared to the member masses, which achieves the low frequencies associated
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with large space structures [17:14]. The actual mass values were selected based on an optinnzing
technique that maintains the lowest undamped natural frequency (associated with the lowest mode)

of 0.5 Hz [26].

Once the masses were determined, finite element analysis was performed to determine the
mass and stiffness matrices describing the model [26]. The physical characteristics of the tross
members, length. cross-sectional area, modulus of elasticity, and weight density. were evaluated to
determine mass and stiffness matrices with dimensions equal to the number of degrees of frecdom
associated with the model [15:58]. Since node 7 is fixed, the elements of the matrices associated witls
this node are eliminated. With three degrees of freedom and 6 nodes, the full model is represented
by 18 modes and 36 states. However, only motion in a plane is being considered so that the systemn

may be fully represented by 12 modes and 24 states.

3.4.3 Sensors and Actuators. A combination of gyros aud accelerometers is used to provide
motion information to the control system. Accelerometers are located at nodes 1 and 2 as shown
in Figure 3.1. The accelerometers are not located at the node of the bending modes being detected
since the “displacement of the truss caused by the bending modes can not be detected™ [15:59]
under those conditions. As previously stated, the output of the accelerometers are integrated once
to obtain velocity data and once again to obtain position data. Gyros are placed at the hub, node
7. to provide angular displacement and angular velocity information. Actuators are co-located
with the accelerometers at nodes 1 and 2. The co-location is done to simplify the system model.

specifically the measurement matrix H. The actuators at nodes 1 and 2 are assumed to be thrusters.

The hub also contains an inertia wheel to act as an additional actuator.

3.4.4 Physical System Parameter Uncertainty. The goal of this thesis is to determine whether
MMAC can control a physical system with uncertain physical parameters. The parameter space
is comnposed of 100 discrete combinations of the parameters of interest. The non-structural masses

and stiffness matrix are varied. The non-structural mass changes are motivated by relating this
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action to the depletion of fuel tanks on the structure, refueling of the fuel tanks (where weight
is heing added), or weight being shifted from one part of the truss to another. The variations in
stiffness of the truss members might be caused by structural fatigue in a rod or rods or, in the more

extreme case, actual failure of one of the members.

3.5 Stale Reduction

The state reduction performed oun the system of equations developed follows the work done by
Kokotovic, et.al. [13:123-124]. The need to reduce the state dimension is due 1o the large compnta-
tional load that a 24-state system would place on the MMAE/MMAC algorithui. Additionally. the
actual effect of the higher order states may not play a major role in the dynamics of the system.
This issue is addressed in this thesis by observing the effect of the higher order states in a gradual
manuer, as was explained in Chapter 2. The truth model contains all 24 states. The reduced order

maodel is developed in this section.

3.5.1 Development. The general deterministic system is first reformulated as [11:52-57]:

. X1 Fiv Fia X1 By
X = = + u (3.18)

X3 Fay Foo X2 Ba

where x; corresponds to “slower” modes to be maintained in the design model and x. corresponds

to “faster” modes to be ignored, and

o= [ m]s (.19)

If steady state is assumed to be reached instantaneously by the “fast” inodes, the x3 modes are
removed while maintaining the low frequency modes in x;. ) and Fas are square matrices and

x5 can be expressed in terms of x; assuming that F,;! exists. Then the higher order modes may
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he expressed by [24:58], [15:62], [11:53):

X2 = Fo1x1 + Faaxa + Bau =0 (3.20)

X2 = —Fp' (Fayx1 4 Bou) (3.21)

Substituting these equations into Equations (3.18) and (3.19) yields [24:58], [15:62]. [11:53]:

X1 = (Fi1 ~ FioFoy Fay)xy + (By — FioFR' B2)u (4.2

(£
1o

z=(H, — HaF33 ' Fay)xy — HaF' Bou (3.23)
The term multiplying the input in Equation (3.23) is a direct feedforward term created by the order
reduction [15:63].

Applying the above order reduction technique to the original truth model svstemr in wedal

coordinates yields a new system dynamics matrix given by [11:54], (11:64], [24:59]:

F 0 I 0 0 —
—wi  —2Gw 0 0
F= 0 . (3.24)
0 0 0 I
o 0 Wi —2(aws

The matrix given by Equation (3.24) has obvious partitions. The upper left partition contains the
low frequency modes to be retained while the lower right partition contains the high frequency
modes assumed to reach steady state instantaneously. The partitions correspond to the /) and

Foy partitions observed in Equation (3.18). Additionally, the subinatrices Fio and Fuy are zero.




Substituting this information into Equations (3.18) and (3.19) vields [15:64]:

x; = Fux,+ Bu= F.x; + Bru (3.25)

7z = Hix, — H, ‘._,T_,llfgu = H,x; + Dyu (3.26)

where the subscript r denotes “reduced-order.” The only term associated with the high frequency
modes s the direct feedthrough term in Equation (3.26). The other matrices are found by tromeating
the states associated with x4 from the full state model.

Of the terins contained in Equations (3.25) and (3.26), D, is the most complicated since the

other terms are readily available. Previous theses have shown that [11:55-56], [15:65-66], [24:59-60}):

D, = —[‘IQFQZ,IIJQ
H. © (~wi)[2Cows])  [-wi]™! 0
0 H I 0 b

H [=wi]= 'V

mxr

where “the unmodeled position and velocity states are represented by H. and [ respectively”
[21:60]. The terms seen in D, show that it is dependent on the state terms that arc assumed to

reach steady state ilmmediately.

3.5.2 Order Reduction Selection. For each location in the discretized parameter space,
eigenvalues and eigenvectors of the unreduced system may be calculated from the system dynamics
matrix F. Table 3.2 shows the average natural frequencies and damping factors associated with
each of the 12 modes of the structure for the 100 filters that were developed for the discretized

parameter space. The damping factors are all close to the 0.005 value used as an approximation in




Table 3.2. Average Damping Factors and Natural Frequencies

Mode Number || Natural Frequency (Hz) | Damping Factor |
1 0.000000 0.000000
2 1.415014 0.007617
3 2.941387 0.011020
4 4.953902 0.005000
5 5.440887 0.005790
6 7.078167 (0.004720
T 9.119647 0.0605000
8 9.872206 0.005559
9 155.113838 0.005116
10 1418.481250 0.005000
11 1811.221250 0.005004
12 3138.732500 (.005000

previous theses. 'The eigenvalues fall mnto closely spaced groups. For example, one group of three
modes is seen in modes 4 through 6. The thesis by Van Der Werken [24] was the only previous
work to use a 24-state truth model, and problems arose when comparing this to a reduced order
filter model. On observation of the frequencies listed in Table 3.2, modes 2 through 8 are all i the
same decade and therefore may all play a role in the performance of the control system, althongh
the amount of energy in each mode must also be considered. Van Der Werken elected to use the
fiest three modes in his filter model corresponding to a 6-state filter model as done previonsly by
Karnick [11] and Lashlee [15] (versus a 24-state truth modei). As explained in Chapter 1. one of
the major goals of this thesis is to investigate this mismatch and to determine the number of states
needed to provide adequate performance from the MMAE/MMAC for controlling a large space

structure.

3.6 Swmmmary

The 24-state truth model and the 6-state filter model that may be employed in a MMAC con-
troller have been developed in this chapter. The degree that the filter model will require imereased
states to provide adequate performance is the purpose of this thesis and the simulation plan to

determine this increase is presented in the rext chapter.
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IV, Simulation

4.0 Introduction

The space strueture under vestigation is simulated in order to study the robustness of the
estimation and control capabilities of the MMAE and MMAC technique emploved. To determine
the statistical properties of the estimation/control process, Monte Carlo anafvsis s porforid
The software used has been developed over a period of years and is outlined o this chaptor T

stmulation plan is presented at the end of this chapter.

7.2 Monte Curlo Analysis

The Monte Carlo analysis performed by the simulation software provides the statistioal in-
formation abont the performance of the MMAE and MMAC algorithims deseribedd o the previons
chapters. I the svstenn nnder investigation were fully linear, then covarianee analvsis vould T
ased [18:329]. However, the adaptive nature of the MMAE/MMAC technigues used to control the
large space structure requires the employment of Monte Carlo analysis to obtain many samples of
the process and evaluate the statistics of the process. As with the work performed by Van Der
Werken {24], the simulation involves two models: a 24-state “troth model™ for aceurate simulatinn
and performance evalnation and a G-state filter model for algorithm design purposes. The filter
madel s the same one used by Karnick [11], Lashlee [15], and Van Der Werken [214. The 2 1smae

trath model was developed inthe last thesis by Van Der Werken [24].

Figure (1.1} shows a block diagram of the Monte Carlo analysis simulation which is o variation

of that nsed by Van Der Werken [24:65-67). The variables of interest are:

e x, (1) the truth model states; 24-dimensional and in modal coordinates, representing the

rigid body mode and eleven bending modes
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e xi1,): estinates of the system states: G-dimensional and i modal coordinates, representing

the rigid body and the fisst five bending modes
e i, (i, ): the vector representing the structure mass and stiffness parameters
e a(t,): estimates of the uncertain parameter vector
e ¢, (t;): the error i the parameter estimate defined as e (t,) = a,(t;) — a(f,)

e ¢ (#,): tue crror iu the system estimate defined in Equation (1.28) as:

(,?‘([,'}:H[)_(((f,)——Hf)_(“,) bl

This 15 a six-dimensional vector. composed of positions and velocities of the structure at nodes

Uand 2, and at the hub, node 3. of Figure 3.1

o H,: the truth model mieasurament matrix modified by the variable A as deserilied tn Fognation

(1.30)

o Hy: the filter model measnrement matrix

Note that the time arguments have been omitted from the figure for clarity.

The statistics of primary concern for the estimation error (and control) processes may be
defined as the sample mean and covariance of the processes. The mean is determined by [21:67].

[1317-1]:
1 L
Ble,(t)} = Me, (1) = 7 3 er(t)) (1.2)
< k=1

where Loas the number of Monte Carlo analysis runs made and e, (¢;) is the value of the error
signal during the £ simulation ran at run time ¢;. The covariance may be caleulated as [2167),

[l-’v:T»l]:
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The statistics of the parameter estimation errors, e,, or true states, x, or Hx, (for control eval-

uations). may also be obtained similarly with appropriate substitutions into Equations (4.2) and

(4.3).

While previous thesis efforts ([11], [15], [24]) viewed the estimation of the states as the error
signals, the goal of this research is to view physically meaningful quantities. The position and
veloelty estimates of the filter bank corresponding to nodes 1 and 2 and the hub of Figure 3.1
are compared to the truth-model-generated positions and velocities (taken to be “noiseless™) via
the mampulation of the truth model measurement matrix. The manipulation is of the form of
virving A to abserve the effects of the higher order bending modes of the structure on the ability

of the estimation technigque to provide accuirate position and velocity estimates. Van Der Werken

[21.07-68] viewed “hie truth states asso.iated with the rigid body mode and the first two hending




modes versus the filter states.

However, this thesis asks a more appropriate question: How well docs the algorithny estimane
(sl also control) the trae shape of the space structure? The simulation software was modified 1o
allow the structure positions and velocities at nodes 1, 2, and 3 to be caleulated from the truth
model and estimated from the filter. A vector of error signals is then determined by subtracting

the filter estimates from the true positions and velocities.

The other simulation performed is the same as the above open-loop estimator simulation. but
with a controller ttuplemented for closed-loop estimation and control. The control sinmlation is
depicted n Figure (41.2). The error signals will be generated and evaluated statistically ax for the
estunation study. Again, the error signals are the actual differences of the positions of the strocture
as determined from the truth model versus the estimated position provided by the filter bank. This
s ~ignificant since the goal of the controller is to queli the oscillations of the structure that may be
induced by moving the structure, changes in structural characteristics, or changes in non-structural
iasses on the stracture. Therefore, the primary quantities to be statistically evaloated are the
actual positions of the structure. In particular, the position means and variances of nodes T and 2

will be determined using Hyx,.

4.3 Software

4.4.1  Introduction. The software used in this research was started by Hentz [8] and then
madificd and used by Filios [6]. Karnick [11], Lashlee {15}, and Van Der Werken [24]. The work
performed through Lashlee was perforimed on a CDC Cyber computer (a non-AFI resouree). Vin
Der Werken [24:69-70] moved the FORTRAN programs to an Blxsi 6400 superisinicomputer (in
house). During the heginning of this thesis effort, the programs were moved once again due o
restoncturing of computer resonrees. The programs now reside on two separate computer systerns

within AFIT: galaxy. an ELXSI 6400 superminicomputer, and blackbird. a DEC VAXC11/785
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snperminicomputer. The programs used are a preprocessor, a processot, and a postprocessor.

4.3.2  The Preprocessor: SETUPS.F. The preprocessor generates the matrices used to de-
scribe the structure over a range of mass and stifiness parameter points. The matrices generated are
®. By, Gy, and H for the system model; and D, given by Equation (3.27); the Kalman flter gains:
and the LG controller gains for the 100-point parameter space. An input file is used to input the
state and control weighting matrices, the measurement noise covariance matrix (RR), the dynamic
driving noise matrix (Q), and the time variables (start time, stop time, and time increment). The
mass and stiffness ma‘rices that describe the structure are also contained in this file. The parame-
ter space 1s determined by multiplying both the mass and stiffness matrices by ten different scalar
valies, thus generating the 100 point space. The truth models and the reduced-state filter models

are contained in two output files to be used by the processor.




4.3.3  The Processor: 6BNK I The primary processor tses the info-mation genciated 1
the preprocessor to perforny the moving-bank simulation via Monte Carlo analysis. As Fiour < 101
and L2 ndieate, the processor propagates the true system, which is a full 24-=tate model of e
structure. and uses measarements of this system to update the estimator (and controller). At the
tcasurenent mput to the estimator, voise is mtroduced in the form of a winte Gaussian nois
vector. The software has the capability to perform bank expausions, contractions, and movenent -
according to the logic described in Section 2.3.1. These functions are used onee the states of the
filter bank have been updated and various uternal parawmcters are compared to proset thresholds

At the end of cach time inerement, pertinent data is written to output files to be postprocessid.

$.2.4 The Postprocessor: RESULT.F. Once the simulation s completed, the dati pnnst be
reduced and put o a presentable format, 1e. graphs of the miean £ oie standard deviation of
quantities of interest. The tost importaut values obscrved in this thesis effort are the crroes in
position and veloeity estimation and the corresponding triue positions wud veloeities for cone!

e aluation.

A4 Sanulation Plan

The main objective of this thesis effort is to determine the robustness of MMAE and MM A
to the effects of the modelling mismateh caused by a 2-state truth model and a Gostate filuer
model, The diffienltios enconntered by Van Der Werken after he jucicised the model states 1o 21
may have been dne to the mismateh between the 24-state truth model and the Gestate filter modl
A means to observe the capability of the MMAE/MMAC algortthms to provide useful inforimation
(i the ease of the estimator) and/or control (in the case of the controller) is to monitor the position
and velocity estimation errors and true position and velocitios of the structure. Fhese values will
Le vinphasized, The simulations perfornmed dealt, with the performance of the estimation of the

stoncture shape and rigid hody orientation, and the performance of the control aleorithim in the

4-6




prosence of a higher order truth model. Additionally, the work of previous theses is attempted due
to the changes made to the software and the computer systems on which the work is performed. 1y

order to corroborate correct impleneutation of these software changes.

441 The Dither Signal. 'To view the effects of the different modes of the large space struc.
ture adequately, a dither signal is applied at the beginning of each 10 second Moute Carlo analyxis
run. The dither signal excites the systein model and enhances parameter identification [15:74]. K-
nick [11:81] and Lashlee stated that a 305’% square-wave dither signal was used with magimitudes of
100 and 300, respectively. Van Der Werken states that a =30 1z square-wave signal of ngmtude

T

100 was used in his research. In reality, the software was written to provide a pseudo-30

224 Jither
signal generated by using the sign of sin(30¢) times the dither magnitude, which creates a square
wave whose polarity is determined by the sine function. The dither created in this manner. with the
sample period of 0.05 seconds in use, did not provide a symmetric dither signal since this violates

Stannon’s sacple theorem. The hub and attached structure had an ininal (post-divher) veloaty

instead of remaining at the null or pre-dither position.

From the Nyquist criterion [23:334-336], the maximum frequency of the dither must be

1
f< o7 (1.-1)

where fis the highest frequency contained in the signal of interest. The sample period used i this

and previous thesis research is 0.05 seconds which corresponds to a maximum sample frequency ol

1 ad
- = 10H: 63258 (4.

1
f*ﬁ_‘ZX0.0F)— sec

Lt
~—

From Table (3.2), the first eight average frequencies are all below this 10 Hz frequency and should
be adequately excited by the dither signal used for this rescarch. The square wave used does contain

harmonies of the fundamental frequency with sufficient encrgy to excite the higher order modes of




the structure. The effect of the higher modes of the structure may well be negligible, but major

goftware modifications would be required to change this hmitation.

4.4.2 MMAE Study. Van Der Werken attempted to observe the effects of higher order modes
by comparing the filter performance to the truth model via a transformation matrix. This thesis
effort follows his recommendations to scale the partition of the truth model measurement matrix.
H,. associated with the higher order mode states, to be scaled by a constant, A. The value of
A will be increased gradually from zero to one, unless drastic effects are observed. This gradual
introduction of the unmodeled states into the estimation process will allow for aninvestigation of
whether more states need to be added to the estimator to provide robust state ostimation of the

space structure.

The actual formation of the modified Hy 1s performed by forming a A matrix defined as

Iexe  Osx1s
A= (1())

O13xs  Aliaxis

and the modified H, matrix is formed by

The reason A s diagonally partitioned is due to the way Van Der Werken geaerated the system
matrices in the preprocessor program [24:223]. Unlike the expression given in Equation (1.25). the
truth states were modified by Van Der Werken so that the first six states represent the rigid body
and first two bending modes for both position and velocity. Thus, the implemented Hy will appear

as i Bqguation (1.30), but with the two inner column partitions interchanged.

Once H, has been formed, the measurement of the true states will be modified by the A

value. A X of 0 corresponds to a truth model and filter mode order match. A A of T would be the
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case where the truth model is a full 20-state model and thus a mismatch between model and filter
will exist. A Dbenchmark is run with the truth model and the filter bank at the same parameter
loeation: (7,6). This position represents the nominal position in the filter space since the scalar
multipliers are both one ai this point and is used to maintain sotne cotmparability with previous
thesis efforts. The first number of the position pair is the mass location while the second number
represents the stiffness location in the filter space as generated by the preprocessor. Additionally.
the initial probability of the center filter is set to 1. This arrangement gives an ontpnt that is
comparable to a single Kalman filter with full artificial knowledge about the parameter condition.
Additionally, the filter is not allowed to move by this arrangement. Once a benchmark has Leen

established, other tests are performed to determine the effects of the truth model/filter mismarel

To test the estimation performance, the true parameter is fixed at representative position
(7.5). which corresponds to the mass and stiffness matrices being unmoditied while generating
the truth model svstem matrices. The center of the filter bank is placed at position (5.5). This
corresponds to a mass matrix scaling of 0.8 and a stiffness matrix scaling of 0.9, The Monte Carlo
runs are performed. with varying values of A, with the filter fixed (a worst casc analysis) and with

the filter being able to miove within the fitter space. The ability of the algorithm to move the filter

bank properly is essential for the cases of varying parameters and jump changes in the parameters.

4.4.3 MMAC Study. The MMAC study is performed by enabling the software to control
the structure by applying control forces. As with the MMAE study, thie goal is to determiine the
degree of influence of the higher states of the truth model on the performance of the 6-state filter

and controller model.

The controller study is performed with both fixed and moving bank configurations. Addition-
ally. the cases of the informed filter bank (the filter bauk fixed at the true parameter location) and
uninforimed filter bank (the filter hank fixed at the some parameter location other than the true

parameter Jocation) will be performed to determine the performance characteristios of the NMMAC




algorithm. For these studies and the MMAE studies, the values of the dynamics noise strength
QQ and the measurement noise covariance R will remain unchanged for the various elemental filter

and controller models.

4.4.4  Dusturbance Rejection. Once the estimation and control processes have been mnvesti-
gated, the robustness of the algorithins is be determined in the event of a disturbance once the
estimation and control process has reached an intermediate steady state condition (as determined
from the MMAC study results). The disturbance is be of the form of a dither signal applied in 1the

same manner as the dither signal applied at the beginning of each simulation run.

4.3 Software Modifications

Several problems with the software were encountered during thits rescarch effort. The INISL
FORTRAN subroutines [10] used in the preprocessor had to be replaced with a newer version of
the IMSL Mathematics Library. An N+1 problem was discovered in the postprocessor.  Addi-
tionally, several poorly coded sections of various subroutines were modified to he readable. These

madifications are now described in some detail.

One of the problems caused by the conversion from IMSL Version 9.3 to IMSL Version 10.0
is that the calculation of the Kalman filter gain matrices for the filter space is possibly numerically
unstable. This problem asserts itself only for large values of Q. In order to create a filter space
with confidence, the value of Q was reduced by an order of magnitude from that used by Lashlce

[15:94]. The filter matrices were generated with

8 0 0

Q=10 8 0 (1.5)
0 0 5
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The numerical instability did not prevent the generation of useful results but does deserve some

future consideration.

The N+1 problem discovered in the postprocessor did not adversely affect the results of
this thesis, since it was corrected, and most likely did not drastically affect the previous thesis
efforts. When the processor writes data to the intermediate files, it writes at every time increnent.
including the first and last time poiuts: 0 and 10 seconds respectively. This arrangement creates
200 intervals since the time increment is 0.05 seconds. However, thie number of measurements s
201. The Monte Carlo analysis therefore writes 201 measurements for each run of the analysis, i
not 200, as assumed by the previous thesis effort [24]. For a large number of analysis runs. the N1
problem just Jescribed could be significant, especially if the beginning and ending magnitudes
of cach simulation ruu are greatly different. With the N+1 problem sull in the software. the
postprocessor reads tn 200 measurements for each analysis. The 201st data pomnt 15 then read i
as the first data point in the next analysis run and so on. For a Monte Carlo analysis perforined
with 100 runs, the last set of measurements read from the intermediate files would be misindexed

by 100 data points and possibly provide totally erroneous insights into the process being studied.

4.6 Summary

Section 4.2 explained the need for and the use of Monte Carlo analysis as it pertains to
this thesis. Sections 4.3.2 through 4.3.4 described how the simulation of MMAE/NMMAC of a
large space structure is performed. Section 4.4 explained how the simulation would be used to
investigate the mismatch between the truth model and the moving bank of Nalman filters or LQG
controllers. Finally, Section 4.5 presented details on how the software was imiplemented and some of
the problems encountered with the implementation. The next chapter deseribes the results derived

from this simulation.




V. Results

S0 Introduction

I'he results of the Monte Carlo analysis are presented in this chapter. The intent of this thesis
15 10 show the robustness of the woving-hank MMAE/MMAC algorithm in the presence of uninod-
eled states in the truth model. Van Der Werken (24] modified the software to provide a Z{-state
truth medel. The dimension of the filters remained at 6-state. This rescarch demonstrates whether
or uut that six-state design model can vield adequate performance as the effect of unmaodeled higher
order true bending modes is gradually changed from nonexistent to fully present.

)

3.0 Malteple Model Adapteve Estemalion Study

3.2.0 Duplicalion of Past Work. The duphcation of past work was performed inasomew it
sul jective manner. The results achieved by Van Der Werken were not repeatable [21:81-20610 The
software problems described in Section 4.5 may have caused the problems his work displayed. b
there is no direct evidence of this. Lashlee worked with a 6-state filter and truth model [15:80-81]
and thus only the cases of A = 0.0 are useful for comparison. Based on the results Lashlee prosents.
this work compares very favorably. Therefore, the intent of this work is to accept this duplication

of Lashtee’s work as a basis, and to extend beyond it to determine the robustness of the algorithims

i the full presence of higher order modes contained in the truth model.

In the previous theses, the difference of the states were used i the Monte Carlo ainaiyvsis.

Lashlee used an error signal of [15:72-74]:

e () = Tx,(ti) — x(1) (.10

where Tis an nox ng matrix “to make the dimensions cotnpatible.™ For this thesis, the ereor signads

will he physically significant values rather than the modal variables. The signals of erest within




the simulation diagram, Figure 4.1, are the noise-free measurement of the positions and velocities
of nodes 1, 2, and 3. The plots that follow show the errors in position and velocity estimates of

these nodes, as well as parameter estimates and filter movement plots.

5.2.2 MMAE Benchmark. To judge the rovustness of the MMAE algorithm adequately
a benchmark is needed to compare to other results, The estimation benchinark is generated Ly
setting A to zero and placing the filter bank and parameter at location (7.6). e the mass parineter
is Tocated at its seventh disarete value out of ten and the stiffness matrix i~ at its sixtde diseren
focation out of ten. The benelinark analysis is shown in Figures 5.1 through 530 Additionally,
the probability of filter five in the bank (the center of the finely discretized bank) ix set to one. I
essence, this is the case of an artificially informed (with correct parameter values). non-adaptive
filter. The (7.6) location corresponds to no scaling of the mass and stiffness matrices. e, as
determined by the finite element analysis. The 10 Hz cquare-wave dither is applied for the first
(.5 secouds i order to excite the system, and the actuator outputs are zerovd after this period.
The dither should stimulate the first eight modes of the truth model (and probably stimulate the

ninth through twelfth modes adequately as well) and provide an adequate means of performmng

parameter and state estimation.

Figure 5.1 shows the benchmark performance of the artificiaily informed. non-adaptive fitver
when the parameter Iocation and filter location match. The order of the truth model and filter
mateh. and thus the filter should provide optimal performance.  After 10 scconds, the error
estimate of the position of node 1 is near zero and the standard deviation is approximately 0.006
inches or 0.006% of the structure length. The error in the velocity estimate of node | is compara-
tively steady, with the signal settling after the dither signal is removed. Figure 5.2 shaws the same
information for node 2 with similar results. Figure 5.3 shows the errors in the position and velocity

estimnation for node 3. the structure hub. It must be noted that, unlike the node 1 and node 2

estimation errors, the node 3 errors are in radians and radians per second | sinee the hab s fixed i




space and only rotates. Again, the stmall error signals and correspondingly small deviations would

melicate that the estimation process is providing good information.

5.2.3  Non<Adaptive Single-Filicr Analysts with Variable A. Figures 5.1 throngh 5.9 show
the results of the A variation runs under the same conditions as the benchmark. i.e., for a single
artificially iformed filter. The position estimation errors for nodes 1 and 2 are essentially the
same for A's of 0.5 and 1.0. Some high frequency effects are observable but are not significan
i magnitude. The same cannot be said of the errors in the velocity estimates of nodes | oand 2
and the error of the position estimate of the hub. The crror signals dramatically show the higl
frequency effect of adimitting somie of the higher order modes into the measurement for the filter,
The magnitude of the errors is an order of magnitude higher than the benehmark, which may cause

a significant problem for the controller if the tuning process is not properly performed.

5.2.4  Non-Adaptive Single-Falter Worst Case Analysis. Figures 5.10 through 5.12 provide
a worst case analysis. The single filter is set to the (5.5) parameter position and is made 1o Le
non-adaptive. The true parameter is located at (7.6). The same dither signal is used to excite
the system. The plots show a dramatic loss in estimation capability with the deviations being an
order of magnitude targer than those for the benchimark. This simulation clearly shows the need
for an adaptive filter: mismatch of true and filter-assumed parameter values yvields unaceeptable
degradation. The value of A was also varied in this worst case analysis. ‘The changes in A showed

no appreciable chianges in performance. See Figures 5.13 through 515 for the case of A = 0.5

The position estinnte error data from the above simmlations are summarized in Table 50
T time averages of the data suggests that the higher order modes observed i the nan-zero )\
ciaes do ot sigmfieantly affect the performance of the filter. The worst case analysis did show that
there is a strong need for adaptive estimation in the case of mismatehed filter-assumed and tre
parameters. The worst case analysis, 1e.. the case where a fixed filter is not Jocarted at the trye

parameter location, is indicated by the » " in the A colnmn. The data presented for the wor
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caxe analysis was generated with A = 0.0. The volocity estimate errors. shown in ‘Table 520 did
not provide the same insights as the position estimate crrors since the veloeity estimates did not
change considerabiy as a function of A, The data from these tables are also presented inothe bar
chiarts of Figures 5.16 through 5.21 in order to enhance comparisons. The first thiree figures presemn
the data for the cases of MMAE with varying A while the last three present the same data wath
the “worst case”™ (mismatched filter/parameter and A = 0) data included for direct comparison.
The trends in the performance of the algorithms in the face of unmodeled modes is obvious in the
velocity estimate errors. Additionally, the “worst case” analysis shows a definite degradation in the

algorithun’s performance due to mismatch between filter-assumied and real parameter valnes,

525 Moveng-Bank MMAE Analysis. The next performance analysis of the MMAE aleo-
ithin was to determine the ability of the bank to move within the filter space when the mitial
parameter estimate and filter location differ from the true parameter location. The simulation was
wittated the same as for the worst case analysis except that the bank was allowed to move. The
probabilities of all the filteis in the bank were initialized to £ and the lower finit of thie proba-
bilivies was set to 0.05. The value of 0.05 was used after it was determined to provide the Lest
maovement of the bank under the current software configuration. Residunl monitoring was used for

the movement logic and the move threshold set to 0.25, again determined in an ad hoc manner

based on performance. The results of these simulations are shown in Figures 5.22 through 5.30.

The results are considerably different from those seen with no movement allowed, as i the
worst case analysis. During the 10 second run time, the position estimates nudeigo consyderable
changes, The jumps scen in the position esitmations are correlated with the actual posttion of the
structure as expected. The true position of node 1 seen in Figure 5.26. the mid-structure pomt,
<hows the effeet of the mixture of high and low frequency bending modes. At about 2.2, 1.0, 6.0,
7o and 9.6 seconds of the run time, the position “smooths™ as the bending mode components go

ot of phase and tend to cancel each other. The changes 1o the position estimate error plot for




node 1 seem to correlite to these points. The changes in the node 2 position estimation errors are
not risthly correlated to the node 2 position. As the structure bends and moves, and the positions
are mensuiod Sy the truth model via z = Hyx,. the new measurement information is pessed to
the filiers and acted upon. The changes in the bank location are evident in Figure 5.25. The miass
parmmeter estimate and the actual shifting of the bank performed well, lingering in the viemity
cf the trae mass parameter location (mass = 7). The stiffness parameter estimate porformed foess
wello with the stiffiess estimate and location remaining wear the mitial stiffuess location (imtial
stiffuess = 5 versus the true stiflness = 6), after drifting in the wrong direction initally, Aeom the
changes in the parameter estimates and the movement of the bank can be correlated someswhar 1o
chinnges e the actnal position of the structure as with the correlation of the position estunation
errors disenssed above, Figures 5.27 through 5.30 show the results of this analysis performed with A
set to 0.5, The change in A revealed the same types of response changes as seen with the artificially
informed, non-adaptive filter. The results of the A = 0.5 analysis makes this behavior less elear
stnice the perforinance is reversed, i.e., the stiffness performs be'ter than the mass estimation and

Imovernent process.

In both cases. A = 0.0 and A = 0.5, the visible pattern of the position and velocity estiimation
errors of nodes T and 2 were not evident in node 3, the hub. This is logical sinee the hub has moeh
areater mass and would not he moved or otherwise chiange its position after the dither signal s

renoved.




Errer (inches)
Q

|

(el

o ,"” ._.‘,._Wr-. .
! [ { : l [ NS

"’l

&
( )
rJ

.

&

(9]

(¢l

IN
I

<

WWM%VAMM&W&%M

S

c 1 2 3 4 S € 7 8

Time {sec)

[T

Mid-Structure

Node 1 +Sigma -

[¥2)
B
]
a

[l
(=)
fei)

a

-5.04

Time (sec)

Mid~Structure

Node 1 h +Zi3mA =T ~=Sigma

(hy

Benelimark Estination Frrors - True Parameter and Dihter at Mass =

= 6. (a) Position and (L) Veloeity Fsttmation Errors. A = 0

54

= Toamd Sttees




E.ror {inches)

o
z
3

— :
(8] (o]
@ 3
w [

2z b
("3}

Qr

m o
- °
c
(Y]

—Zigmz

+Sigma

Node 2

10

Error {inches/sec)

I

(sec)

Time

End of Stiructure

+Sigma -Sigma

Node 2

(b)

T and Stuflfness

Beneclimark Estimation Errors - True Parameter and Filter 24 Mass

b

)~

sure

s

0

6. (a) Position and (b) Velocity Estimation Errors. A




Error (rodians)

Time (sec)

Strucrure

Hub of

-Sigma

+Sigma

2

Noda

(a)

Error (rad/sec)

Time (sec)

Hub of Siructure

-Sigma

+Sigma

(b}

Node 3

- 7 and Suffness

Benehimark Estimation Errors - Troe Parameter and Filter at Mass
= 4. (a) Position and (b) Velocity Estimation Errors. A = 0.

3

5

Fionre

5-%




L

Error (inches)

c.cce
|
! -
C.CCE ~ : [
i g
! oA M7y M i
CCCA;— Ny vv‘u‘}"\“‘kv IR
i . | { ,‘i 1 )‘\ %&,‘ﬁ[\("'f’u ¥ V“ VoY f |
5 . A LR A WAV AR AT
c.ccz o Ak )0 'Hu,ﬁv;’\_"l '*, j N AR R
; .

—C.cca -
-£.cC8 - L

I !
-c.ccg - 4 -+ : 4 — -

o} 1 2 3 4 S 6 7 8 9 1C

Time (sec)
Mid—Struc‘ure
Node 1 ~ +Sigma — -Sigmao

(a)

Error (inches/sec)

Time (sec)

Mid—-Structure

— Nodel ——~ +Sigma *— -Sigma

(b)

Fienre 5.4,

Single-Filter Estimation Errors - True Parameter and Filter at Mass = 7 and Stiffiess
= #i. {n) Position and (b) Velocity Estimation Errors. A = 0.5,

e



Error (inches)

VAt N
‘A.’\,V\}"'\ -
A AN

[
i
w
l_ ,\ ’/Ku_ J
‘ e fAMY Y A
P argets Anmaa p AR AN ST VN
= ) \ n
=

c MM AN AR AR AR\ A e AN
-t i
[TV L |
“V YA « 1,

—c.co2 ! \’"-""y"'v X 1
' 'N‘;-’.-',,(n |
‘ » ¢ -‘}\“‘_' l,',‘
-c.cm‘» T
| |

—.cC6 L - . .
c 1 2 3 4 5 6 7 8 9 10

Time (sec)

End of Structure

Node 2 +%igma -Sigma

(a)

Error (inches/sec)

015

Time (sec)

End of Structure

— Node 2 +Sigmo — -Sigma

(b)

Figure 53.5.  Single-Filtcr Estimation Errors - True Parameter and Filter at Mass = 7 and Stitfhess
= 6. (a) Position and (b} Velocity Estimation Errors. A = 0.5.

5-1u




Error (radians)
Cc.c15s

& ! ], 1
Al JINLE & i H AN
T TR A |
-0.CC5 { {‘HI{ ui}y¥liq {iqﬂ*lt‘ o
iy
|
-C.C1 . — 1 L ;
c 1 2 3 4 S [ 7 8 9 16

Time (sec)

Hub of Siruc‘ure

Node 3 — +Sigma —— -Sigma

(a)

Error (rad/sec)
02

0.0

o
;_

h-‘z I i X‘ [\',.,“ ',_r“‘. .{”‘I
{ W ‘,{‘[Yﬁ{fﬁﬁ!‘{iw i N\!{“ﬂ(/m | x:imf % i I
T s

Hub of Siructure

Node 3 —— 4+Sigma

(b)

-Sigmao

Firure 3.6,
~

Single-Filter Estimation Errors - True Parameter and Filter at Mass = 7 and Stiffuess
= 6. (a) Position and (b} Velocity Estimation Errors. A = 0.5.

5-11




Error (inches)
C.cC8 —

O
o
o
(e
[

Time (sec)

Mid~Strucrure

Node 1 — +Sigma -Sigma

(a)

Error {inches/sec)

0.4

0.2°%

Time (sec)

Mid~Structure

~— Node 1 ~— +Sigma —~ —-Sigma

(b)

3

Figure 5.7,

Single-Filter Estimation Errors - True Parameter and Filter at Mass = 7 and Stiflness
= 6. (a) Position and (b) Velocity Estimation Errors. A = 1.0.




Error {inches)

C.CC8 -
i 1
| |
Cc.cca - s
. i
c.cc2r . (1 . ,"\. A»\ ,V/\,\'w YR !
A A J“\/A\ A]"\‘\// A A \'A\f‘lv KA ‘
LN E Y .
. A, ’A_'r\f\'rh‘j\"" JA,J"\' Ny AL ‘
O VA INNA ANVN
SRRy
—£.0C2 ~ oy Vv ,\"-4'“1/“.‘._ ad U ‘;
"“-"‘."v !
[T R R o~
—£.CCa - v A
|
I
!
-€.cce : :
9 1 2 3 4 5 8 7 8 9 1C
Time (sec)
End of Structure
Node 2 — +Sigma ~Sigma

(a)

Error (inches/sec)

0.4

i
0.3+

0.2 -

0.1

Time (sec)

End of Siructure

Node 2 +3igma — —Sigma

(b)

Figure 5.8,

Single-Filter Estimation Errors - True Parameter and Filter at Mass = 7 and Stiffuess
= 6. {a) Position and (b) Vclocity Estimation Errors. A = 1.0.




Error {rodians)
d

C.C2; -
c.C1s
i
0.C1 ‘t\‘,
! N\H,\r \ﬁ,ﬁ,‘! “w\\j\m]
C.CCS ~ A A ‘:rAyt o i
P"m i\ g “‘ l ,
0 : t f 1 ' kY
v 1 1 LAY
-.0C5 - REPRINIER Y0 Uy
] {1 AR
—0..1 } ‘!{‘(’-‘..‘
—CC15[’
-0.€2 L L L
c 1 /3 3 4 5 3
Time (sec)

Hub of Structure

Node 3 ~— +Sigma —— -Sigma

(a)

Error (rad/sec)

Hub of Sfructure

Node 3 T +Sigma —— -Sigma

(b)

Figure 5.9

Single-Filter Estimation Errors - True Parameter and Filter at Mass = 7 and Stiflness
= 6. (a) Position and (b) Velocity Estimation Errors. A = 1.0.

5-1°




L

Error (inches)
c.ce2

o B
S A
[ aat

R e NN A i
VN A A
- \’- ‘NA,VA-. .. [
~C.01 - Uil i
NS \
N
1 "y
—£.C2 ! :
o] 1 2 3 4 ) 8 7 8 9 1C
Time (sec)
Mid~S*ructure
Node 1 — +Sigma —— -Sigma

(a)

Error (inches/sec)

Time (sec)

Mid-Structure

Node 1 T +Sigma —— -Sigma

(b)

Figuee 5.10.

>

“Worst Case’
at {3,5). (a) Position and (b) Velocity Estimation Errors. A = 0.0.

Single-Filter Estimation Errors - True Parameter at (7.6) and Filter




Ercor (inches)

g.cz \
i
cez - "
T 5
e |
c.ci : P
e |
- ‘A_M i
0 TR e e = S
\\\\\ !
.1k : : ‘ *
e |
\__ B
<c2f - !
— i
i ‘ l
.03 : : - :
c 1 2 3 4 5 [ 7 g 9 1C i
Time (sec) i
End of S*ruccure :
Node 2 — +Sigma -Sigma !
(a)
Error (inches/sez)
0.1 -

{
l

Time (.ec)

End of Structure

Node 2 ~" +Sigma ~"T -Sigma

(b}

Figure 5.11.

“Worst Case” Single-Filter Estiiaation Errors - True Parameter at (7.8) and Filter
at (5,5). (a) Position and (b) Velocity Estimation Errors. A = 0.0,

5-16




Error {radions)

)
-

Y

Time {sec)

Hut of Structure

Node 3 — +Sigma —— _Sigmo

(a)

Ecror (rcd/sec)
2

al f Hey
’ ITILNLS R
i "(J.Cl»l-;é-,l“n‘“l (»'\I:" .’ili\}j
ik J {‘ v [t
-0.02 L L L i

Hub of Struciure

— Node 3 +Sigma — .-Sigma

, 1
{h) j

l .

“Worst Case™ Single-Filter Estimation Errors - True Parameter at (7,6) and Filter

at (5.3). (a) Position and (b} Velocity Estimation Errors. A = 0.0.

I“‘l,’_’)l}‘r) 5.12.

ot
+

—

-1




—
Error {inches)
0.Cc2 —_—
| -]
| R .
“ , AT !
c.Ct - ﬂ.‘vm'/ ”~ :
AN ,
) N .'.‘,m'.‘v'\,“ff* Iy ‘
NV 1
1h. PPV IO AL |
l
|
|
" 1
e ‘.‘
M
10
Time (sec)
Mid—Structure
Node 1 — +Sigma - -%igma
(a)
{
\
I
Time (sec)
Mid ~Structure
Node 1 T +Sigma — -Sigma
(b)
L

Fignre 5 13,

“Warst Case” Single-Filter Estimation Errors - True Parameter at (7.6) and Filtor
at (5.5, (a) Position and {b) Velocity Estimation Errors. A = (.5,




Error (inches)
c.C3; —
f
c.c2 g
‘, =S
cerr B
; P
' J B PN
| C P S ———
] z N“"*\—\_\‘W 1 I
| e T | |
\ 1 ~——
<.c2 - ! \
l ’ i I
l —c.o3t —- ‘
1 c ! 2 3 4 5 5 7 e 9 1c
\ Time (sec) ‘
| |
% End of Structure
1 —— Node 2 " +Sigma — -Sigma }
| |
i (a) ‘
( i
! '
@ 1
! |
|
! Error (inches/sec)
\ 0.2 : —
|
|
{
|
i
i
i

l Time (sec)

] End of Structure

] —— Node 2 — #3igms  —— =Sigma

\ ! 1
Fizore 500 ~Worst Case” Single-Tilter Lstimation Tiiors - True Parianeter ar (7.0) and il

ar (5.5 (a) Posttion and (F) Veloeity Estumation Errors. A = 0.5,




N R SCHORE
F/G 2272

NST OF TECH

-
=)
=7

(-4

m

w

3

N

-~

i

L]

L}

Q

w

Q

-]

w

-

[

-

w

v

w




My o = nk gz
= o

= fj,
Hlll '
EY e

i e

mn
6] |




Error (radians)
;

Time (sec)

Hubt of Srrucrure

Mode 3 +Sigma -Sigma

(a)

Error (rad/sec)
2

Time (sec)

Hub of Structure

Node 3 —— +Sigma -Sigma

(h)

Fignre 5,15, “Worst Case” Single-Filter Estimation Errors - True Parameter at (7.6) and Filter
at (3,5). (a) Position and (b) Velocity Estimation Errors. A = 0.5.

5-20




[ Node [ A [ Mcan [ o ]
1 0.0 1 0.000146 | 0.00461 (in)
0.5 | 0.000145 | 0.00-162

1.0 | 0.000145 | 0.00457
-1 0.000714 | 0.01436
00 | -0.000153 | 0.00263

0.5 | -0.000153 | 0.00263

1.0 | -0.000154 | 0.00263

~ 1 -0.001CH0 | 0.01639
0.0 T £.000850 | 0.00395 (rad)
0.5 | 0.000095 | 0.00:472

1.0 1 0.000114 | 0.00614
0.000158 | 0.00565

O O N N N N

Table 5.1, Position Estimation Means and Standard Deviations for NINTAL

[ Node I A ] Mean ] log
1 [00 ] 0.000345 | 0.02295 1
0.5 | 0.001073 | 0.06638
1.0 | 0.001800 | 0.12617

~ | 0.000632 | 0.05166
0.0 | 0.000215 | 0.03425
0.5 | -0.000160 | 0.06013
1.0 | -0.000537 | 0.10590
— | 0.000177 | 0.04922
0.0 | 0.000902 | 0.00986 =2
0.5 | 0.000919 | 0.00984
1.0 | 0.000919 | 0.00985
-1 0.000919 | 0.00985

515

WL W W NN N~ —

Table 5.2, Velocity Estimation Means and Standard Deviations for N AL
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S Multiple Modd Adaptive Controller Study

5.3.1 Duplication of Past Work. As with the MMAE study, the duplication of past waork
was performed ina somewhat subjective manner and the same Lisitations were observed. The
same attalysis was performed with the NMMAC algorithm as with the MNMAF algorithin and the

following subsections present the MMAC study results,

532 MMAC Benchmark., 'The MMAC benchmark is determined the same way as for the
MMAE benchmark and is equivalent to a single artificially informed LQG controller. The wlter
and parameter location are set 1o (7.6). The filter s an actificiadly inforeed . non-adaptive clenen
of the moving-bank. The resalts of the benchmark arve shown in Figures 5231 throsah 5235 Fionre
5.5 shiows the position of nodes 1 and 2 and contains the most critical imdormation coneerning 1
MMAC algorithim’s ability to provide control of the structure. Also note that the hub actuator

wput, shown as the darker line in Figure 5.34, is zero after the initial dither during the first 0.5

seconds.

Fignure 5.31 shows that the position estimate error is maintained below 0.002 inches Tor the
period of the Monte Carlo analysis run. This is an improvement by a factor of three over thy
MMAL bencelunark. The position estitnate at node 2 is similarly improved. The velocity estimates
and the node 3 position estimates do not show much change in their performance over the NMAFE

algorithm. Figure 5.34 shows the control inputs as determined by the MMAC algorithm.

The control signal is activated at the 0.5 second point of the run. The inttial magnitudes
are Jarge but soon quell down as the controller gains control of the structure.  As the process
continues. the algorithm causes the control inputs to grow suddenly. This activity may be, in part,
a phenomenon that is called bursting. By bursting the control inputs periodically, the controller
is able to enhance parameter identification and thereby improve estimates of the states and the
positions and velocities. The control input magnitudes remain at less than 5 lbs for most of the

control run as shown in Figure 5.34,




3430 Non-dapteee Songle-Controller Analysis with Vartable A, Figures 536 through 515
show the results of the control performance study with variations in A, The ouly appreciable
difference for the variations s i the nitial control acquisition phase. hetween 0.5 and 1 secand
The introduction of the higher frequencies obviously cause the coutrol iupnts to be considerably
lnrger, thus causing a transient in the position and velocity estimate errors. Surprisingty, the state

(shape) control for the case with A = | is superior to the case where A = 0,

3.3.4  Non-Adaptive Single Controller Worst Case Analysis. As with the NIMALE stody, o
worst case MMAC analysis is performed with the bank i a nusinformed . non-adaptive mode te
the bank at position (5.5), the parameter at position (7.6), aud the bank fixed, Fiaures 506 thimogh
5.53 show the performance for this configuration. The MMAE worst case analysis showed thiat 1
estination process suffered cousiderable degradation due to this configuration. The non-adapniv
control worst case analysis shows that this configuration is a catastrophic one. The control input
rises in an exponential manner from the mitial control turn-on transient. The position and velocity
estimation errors grow in the same fashion. If this were to be allowed to continne the structure wonld
surely self-destruct. Adaptivity is thus seen to be critical for control of this systein. An increase in
A does provide some improvement in performance but still leads to probable catastrophic behavior.
The results of the benchmark, A variations, and worst case analysis are sunnnarized in Tables 5.3
and 5.4. Figures 5.54 through 5.59 present this data graphically with the first three illustrating the
effect of A variations. The last three figures present the same data with the “worst case™ included
and show temporal average results over the simulation time. The meaningful information contained
in these [atter graphs is the unstable behavior of the system under the “worst case™ mismatehed

conditions.

5.3.5 Moving-Bank MMAC Analysis. The next performance analysis of the NMMAC algo-
rithin was to determine the ability of the bank to move within the filter space when the il

parameter estimation and filter location differ from the true parameter location, and to investigate




its capacity to maintain stable control of the structure. The simulation was imtiated the sine as
for the worst case analysis, except that the bank was allowed to move. The probabilities of all

1

the tilters in the bank were initialized to § and the lower limit of the probabilities was set to 0,05,
Residual monitoring was used for the movement logic and the move threshold ser to o250 The
results of these simulations are shown in Figures 5.60 through 5.81. These figures represent four
set= of figures for four different A values: 0.0, 0.25, 0.5, and 1.0. The values of A were chozen on
an ad hoc basis. The value of 0.25, not used in the MMAE study. was chosen to assure that no
performance indicator was missed. After performing numerous Monte Carlo runs, the decision to
use plots such as Figure 5.35 to show only the mean position of the structure was made sinee the

additional data of £+ standard deviation was not informative to the degree that necessitated their

presentation, e, they were very small.

While the “worst case” study and the moving-bank study both started the filter at a paran-
eter location different from the true parameter location, the ability of the bank to move and locate
the true parameter proved to be essential. The moving-bank MMAC study showed that the filter
bank could perform as well as the artificially informed non-adaptive single-filter controller. Con-
versely, the non-adaptive mismatched filter performed catastrophically, with the strueture hecoming

unstable.

The performance scen in these plots indicates that there is no dramatic degradation in adap-
tive control as A is increased from zero to one. Thus, there would be little benefit to be gained by

increasing the number of states of the filter model beyond the current. six.

p
~

4 MMAC Disturbance Rejection Study

With the data just presented available, a disturbance rejection study was performed. The
intent. of this study is to determine whether the controller can maintain control of the structure

the face of both the model mismatch and an unanticipated external disturbance. For this study.




note that A = 0.0, The ability to reject a disturbance is essential for a control systemn operating
in an environment perturbed by both man and nature. The MMAC study was reworked with a
modification ic the control inputs. At the 4-second point of each run. the dither was turned on
again for 0.5 seconds with a magnitude of 50 versus 10 for the initial dither. Closed-oop control
was maintained, as opposed to no control inputs being applied durtnig the intal 0.0 seeond dither
period. Figures 5.8 through 5.89 show the results of this study. The results of the disturbed
system follow a pattern similar to that seen with the previous MMAC results. Fhe velocitios of
nodes 1 and 2, and the position of the hub, node 3. are greatly affected by any disturbances. be
they the initial dither or a disturbance during the control process. The control nputs i Fianr
5.87 show that the structure is brought under control in less than 0.5 seconds alter the disturhanee
is removed. In Figure 5.87(b), the controller has added its own control inputs to the disturbane:
signal and remains high for a short time after the disturbance ends. After the disturbance was
applied. the controller continued to perform well and maintained control of tiie structure although
the disturbance has increased the amount of “vibration” about the zero null position for both
nodes 1 and 2. The position and velocity estimation errors returned back to their pre-disturhance
levels after about 1.5 scconds after the disturbance was removed. The previous results for the
moving-bank MMAC with A = 0 should be compared to these results. The controller rejected the

disturbance well, and this provides insights into its ability to handle system disturbances.

5.5 Number of Monte Carlo Analysis Runs

Several Monte Carlo analysis were performed in which the number of runs was significantly
increased. The results did not justify the added expense of increased computation times. Figure
5.90 1s an example of a 100-run Monte Carlo analysis. This is a repeat of the disturbance rejection
study performed in the previous section. While the plots shown in Figure 5.84 and 5.90 are not
identical, the general characteristics are similar and provide the same fundamental information.

The velocity estimation error does show that the post-disturbance transient is somewhat longer




than for the 100-run Monte Carlo analysis. More significantly, the structure rerains vader contior,
Obwviously, after 100 runs. the additional data smooths the means and variances. This comparison
of 10 and 100-run Monte Carlo analyses provides corroboration of the validity of the results given

i this chapter which were performed with 10-run Monte Carlo analysis.

5.0 Summary

The results presented in this chapter covered the performance of two algorithms: the NMAE
and MAMAC algorithms. The estimation by the moving-bank MMAE of the positions and velocities
of the nodes of mnterest was not drastically affected by the presence of higher order modes of the
truth model. When faced with the lack of true parameter information. the single non-informed
filter performed poorly. The problem of a non-adaptive fixed filter/controller wax even more clearly
demonstrated in the case of the NMAMAC study, in which the parameter mismateh caused instability

of the closed loop system.

The performance of the MMAC to estimate the positions and velocities of the nodes was
improved over the MMAE performance. The structure was also effectively brought back to the null
position. The moving-bank MMAC preformed nearly as well as the benchmark and maintained
adequate control of the structure. The disturbance rejection showed that the controller could

maintain control of the structure in the face of a strong short duration disturbance signal.
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(a) Position and (b) Velocity Estimation Errors.
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Figure 546,

“Worst Case” Estimation Errors with Single-LQG-Controller, Node 1 - True Param-
eter and Filter Mismatch. (a) Position and (b) Velocity Estimation Errors. A = 0.
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Control Inputs for “Worst Case™ Analysis. (a) Mid-structure
structure actuator.
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l Node [ A I Mean l o ]
| 0.0 | 0.00000650 | J.001486 (in)
0.5 | 0.00000443 | 0.001509

1.0 | 0.00000539 | 0.001513

~- 1 -0.00008770 | 0.001974

0.0 | 0.00001241 | 0.000511

0.5 | 0.00001153 | 0.000518
0.00001280 | 0.000532

- 0.00000210 | 0.001751

(.0 | 0.00001405 | 0.002033 (rad)
0.5 | 0.00004367 | 0.002912

1.0 | 0.00004159 | 0.003921

- 0.00335803 | 0.084584

Lo W W RS RS K= —
=)

Table 5.3, Position Estinnation Means and Standard  Deviations for MMAC (Single-LOQG-
Controller)

[ Node I A [ Mean l led

] 0.0] 0.00023811 | 0.023786 =
0.5 | 0.06022671 | 0.083701
1.0 | 0.00001279 | 0.000532

— ] 0.01290439 | 1.258831
0.0 | 0.00602993 | 0.034800
0.5 | -0.00028324 | 0.066729
1.0 | 0.00031122 | 0.119798

— | 0.02472575 | 0.915436
0.0 | 0.00034481 | 0.009369 L
0.5 | 0.00034629 | 0.069369
1.0 | 0.00034503 | 0.009378
| 0.00039543 | 0.010457

o WL LS BN N = — —
Y

Tabie 5.4, Velocity Estimation Means and Standard Deviations for Single-LQG-ontroller Case
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Fignre 5.50.

“Worst Case” Estimation Errors with Single-LQG-Controller, Node 1 - True Param-
eter and Filter Mismatch. (a) Position and (b) Velocity Estimation Errors. A = 0.5.
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Figure 5.51.

“Worst Case™ Estimation Errors with Single-LQG-Controller. Node 2 - True Parani-
eter and Filter Mismatch. (a) Position and (b) Velocity Estimation Errors. A = 0.5
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Figure 5.52.  “Worst Case” Estimation Errors with Single-LQG-Controller, Node 1 - Tiue Param-
eter and Filter Mismatch. (a) Position and (b) Velocity Estimation Errors. A = 0.5.
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Figure 5.55.  Position Estimation Means and Standard Deviations for Single-LQG-Controller Case
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ysis and (b) Velocity Estimates with Worst Case Analysis

5-66




Error{1£-~5 inches)
60 - -
t

! !

Lambda = 0O Lambda = 0.5

Variationsg in Lambda

Ml ean [N Sigmao

Ercor {inches/sec)

0.08

0.06 +

0.04 -

0.02 -

-0.02 L L 1
Lambda = 0 Lambda = 0.5 Lambda = 1.0

Variations in Lambda

N veon Sigma

(b)

Figure 5.56.

Position Estimation Means and Standard Deviations for Single-LQG-Controller
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Estimation Errors with Parameter/Filter Location Mismatch and Movement of the
Bank with MMAC, Node 1 - True Parameter at (7.6) and Filter Initially at (5.5).
(a) Position and {b) Velocity Estimation Errors. A = 0.0.
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Control Inputs for the Single-LQG-Controller Case Bank Movement Analysis. A = 0
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(a) Position and (b) Velocity Estimation Errors. A = 0.25.




Error {inches) (1E-4)
c

C

(o)

W

-10
-18 L ! L .
c 1 2 R} 4 ] € 7 g 9 1C
Time (sec)
End of Struccure
Node 2 — +Sigma — -Sigma

(a)

Error {inches/sec)
4

c 1 2 3 4 5 6 7 g 9 1C

Time (sec)

End of Structure

Node 2 — +Sigma —— =~-Sigmao

(b)

Figure 567, Estimation Errors with Parameter/Filter Location Mismatch and Movement of the
Bank with MMAC | Node 2 - True Parameter at (7.6) and Filter Tuitially at (5.51.
(a) Position and (b) Velocity Estimation Errors. A = 0.25

5-7T7




Error (rcdians)
C.CtS 1

i
cort &
i

c 1 2 3 4 S 8 7 8 9 1C

Time (sec)

Hut of Structure

Node 3 — +Sigma —— =—Sigma
(a)
, Error (rad/sec)
p' P A Lo bl
0.01 I»! ‘Kﬁ']‘i :‘\\F’} ‘l. f/*\‘“\/’\‘([ ‘N‘}E/\ L,.‘.." ’A;"r’\\;.".w 7 l‘l“"\"‘i\ ,l“:"'lk\ ) (\l;"? ‘l’!;"
VN JV Wi \};ﬁfy\.}r" i gl LA S
I ”’i LI 1

Time (sec)

Hub of Structure

— Node 3 — +Sigma -Sigma

(b)

Fignre 5.68.

Estimation Errors with Parameter/Filter Location Mismatch and Movernient of the
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(a) Position and (b) Velocity Estimation Errors. A = 0.25.
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VI Couclusions and Recommendations

61 Introduction

The robustness analysis of the MMAE and MMAC algorithins, for the structure evaluated and
for the state mismatch between the truth model and filters, indicates that the effeets of wnmodeded
states do not cause serious degradation of the algorithms™ performance. The results prosentod 1o
Chapter 5 clearly indicate that the proposed reduced order models and resulting filter/truth node]
mismatch could be tolerated by the algorithms and that more rescarch should be performed to

provide further understanding of the abilities of these algorithims to control a large space structure.

6.2 Conclusions

The results of the MMAE study showed that, while the estimation process of the adeorihm
was sensitive to the mismatch between the filter and truth models, the sensitivity was not sufficient
to justify increasing the filter model mode content. The computational bhurden created by pomg
beyond the current 6-state model would be dramatic since it would appear that the addition of
several states would be required for a significant improvement in performance. Additionally. the
worst case analysis showed that the performance of the mismatched-parameter, nonadaptive filter
was very poor. The ability of the bank, in the fine discretization mode. to move witlian the
parameter space was good enough to provide equivalent performance to the artificially informed,

non-adaptive filter used for the benchmark.

The results of the MMAC study were even more conclusive in determining that an inerease
in filter state size is not required when compared to a 24-state truth model. The performance
of the benchmark showed a very tight control over the space structure. "The worst case analysis
showed that the mismatel of the assumed parameter in a single LQG controller could lead to
catastrophic failure of the strueture itself. The ability of the bank to move in the parameter space

was sufficient to provide adequate control of the large space structure, despite nnmodeled effects.
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The disturbance rejection study of the MMAC algorithin showed that the contraller could respond

1o a farge short duration disturbance and maintain control over the structure,

The moving-bank MMAE/MMAC algorithms used in this thesis provide good control over

tlie two-bay truss structure. There remain several topics of research that shonld be fnvestisited 16

refine the performance of the algorithins. The next section outlines recommendations that shonld

he performed in future research.

.5

Recommendalions

The research performed in this thesis was hampered by a number of Tactors. The seope o the

research performed was not sufficient to cover all areas of interest, and research should Le continued

to address some of the concerns raised in this and previous thesis efforts  Using the smne spaee

steucture, filter/controller models, and truth model, the following recommendations are made:

l.

[

The values of the dynamics noise strength Q and the measurement noise covariance Romatrices
in the Kalman filter gains should be varied and the effect of these should be investigated in
detail. Special attention should be paid in the generation of new filter and truth model
matrices because of the numerical instability problem suggested in Chapter 5. The software
modifications to allow for tuning Q and R. should be made as suggested by Vi Der Werken
[24:210]. The Q and R should be scalable in the same manner as the mass and stiffiess
matrices by iputting base matrices and an array of scalar multipliers. The issue of non-zero

off-diagonal terms in the measurement noise matrix should also be investigated [24:210].

Verify that the state weighting matrices are tuned for the best possible performance of each

elemental LQG controller within the MMAC synthesis.

The issue of changing parameters should be researched thoroughly. The parameter should he
allowed to vary slowly and perform jump changes, such as would be caused by fuel depletion

or structural failure of a truss component, respectively.
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The parameter space discretization should also be reevaluated, since the capability of the
filter bank to move to the arca of the true parameter was not optimal. In particu.ar. proper
(perhaps coarser) discretization of the stiffness parameter space should receive attention i

future research efforts.

The use of son.e variation of residual monitoring might be considered for performing movenicent
of the bank. One possible means may be residual magnitude monitoring. i.e. monitoring
the quantity ¢ ()" r(#;) as opposed to 1'Z(ti)A,:’(ti)1~k(ti) as in Equation (1.20) and o
accomplished in this rescarch.

The software was corrected where appropriate. After heing uscd and moditicd Tor live iteen
tions, the software is in need of being overhauled and thocoughly documented (in-codei. T
addition, several portions of the code, most notably the dither control. has been rewrition i

an ad-hoc manner to provide useful information in this thesis. These warrant further stindy.
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Block 18: Abstract

The robustness of moving-baak muitiple model adaptive estimation (MMAE) and
control (MMAC) algorithms is analyzed in this thesis. The mismatch of a 24-state
truth model and a G-state filier model are evaluated on the basis of MMAE/MMAC

performance,

A model developed using finite element analysis is used to approximate a large
space structure which has a large central hub with appendages radiating out from
it. The mass of the hub is considered to be much larger than the mass of the dexible
structare. The model is developed in physical coordinates and then transformed
into modal coordinates. To obtain a reduced order flter model, the method of
singular perturbations is used. The actual positions aad velocities of various physical
points on the structure are used ia the evaluatior of the MMAE/MMAC algorithm
performance.

The resuits of this study of model mismatching indicates that the MMAE provides
accurate position aad velocity estimates even in the face of a G-state to 24-state
model mismatch. When a non-adaptive filter is used with a mismatched parameter
location, the performance suffers slightly. The use of an adaptive estimator does
provide improved performance in the face of uncertain parameter location. Stable
control was obtained with the use of MMAC, For the case of noa-adaptive filter
aad mismatched parameter location, the control algorithm behaved in a possibly
destructive manner. By allowiag the filter to adapt to the initial parameter location,
the MMAC algorithm provided stable coatrol of the structure, evea in the face of
large disturbances.







